In order to foster the diffusion and exchange of ideas about Goldbach’s Conjecture (for example possible proofs), we created this page which collects some contributions that have been sent us from our readers for that purpose. They are sorted by year and, with equal year, by author’s surname. Send us a new contribution

### Ideas for possible proofs

Ultima, About the exceptions to Goldbach’s conjecture III, 2022
Our attached reader Ultima continues to develop his theory about the exceptions to Goldbach’s Conjecture. In this work he introduces some hypotheses that let write even numbers into forms similar to Conjecture’s one, also using a known theorem by Wen Chao Lu which asymptotically bounds the number of possible exceptions. The document ends with some clarifications on what means to represent an integer number into a certain form, and about the content of the set “G2” used throughout the document.
Michele Bertolino, Every power of 2 is the sum of two prime numbers, 2022
Michele Bertolino sent to us this proof of a subcase of Goldbach’s Conjecture, which considers only powers of two. In spite of this limitation, the paper is very interesting for the originality of the methods, shown by means of some geometrical constructions, as well as for the presence of rather important intermediate results, like a connection between the Conjecture and the couples of twin primes (Theorem 4.1). The proof, though achieving the final goal, has one open point (Conjecture 5.2), which is still under analysis: is someone able to prove it?
Ultima, About the exceptions to Goldbach’s conjecture II, 2021
Our reader Ultima, after having supposed the existance of exceptions to Goldbach’s Conjecture (see also the other contribution of the same author listed below in this page), continues his argument attempting to find a form for expressing such exceptions, observing that some forms can be reduced to other ones. The final goal is to find a connection between Lemoine’s Conjecture and Goldbach’s weak Conjecture.
Ultima, About the exceptions to Goldbach’s conjecture, 2020
Is it possible to prove Goldbach’s Conjecture by contradiction, starting from the existence on a hypothetical set of exceptions? Our reader Ultima tries to sketch out an argument of this kind. The starting point is that every even number greater than 6 can be expressed as a sum of four prime numbers, which is a consequence of the weak Goldbach’s Conjecture, proved by Helfgott.
Francesco Di Noto and Michele Nardelli, Theorem about the number of Goldbach’s pairs up to even N, 2019 Discussion, with numerical examples, of some estimates for the number of Goldbach’s pairs. These estimates are based on some interesting correlations, for every even number $N \geq 4$, between the number of Goldbach’s pairs and the number of prime divisors.
Francesco Di Noto and Michele Nardelli, Weak Goldbach’s conjecture already proved. The strong conjecture follows, 2016 Proof sketch of the strong Goldbach’s Conjecture based on its weak version. Also some numerical evidences are discussed, for example about the number of Goldbach’s pairs (this topic will be studied in detail in a later paper by the same authors, see above). The paper ends with some mentions about Fermat’s factorization and Lagarias’ equivalent of the Riemann Hypothesis, RH1.

### Other contributions

Ultima, Ultima – Almost all odd numbers can be understood as the sum of three prime numbers (alternative proof), 2023
Our reader Ultima noted that, started from Wen Chao Lu’s theorem about the exceptions to Goldbach’s Conjecture, it’s possible to obtain a statement very similar to weak Goldbach’s Conjecture.
Giovanni Di Savino, Goldbach’s conjecture satisfied with the strategy which youhg Gauss invents for summing numbers from 1 to 100, 2022 Giovanni Di Savino offers us a wide-ranging reflection about Goldbach’s Conjecture, touching on different themes of modern and ancient mathematics, with numerous sitographic references.