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Abstract 

 

This article provides novel insights on Hardy-Littlewood's conjecture (infinity and distribution of twin 

primes) and on Goldbach's conjecture; this work is primarily based on two primality theorems of congruence 

and of compcongruence. Study results in demonstration of Hardy-Littlewood and the Goldbach 

conjectures.The approach taken also opens up new areas of possible research in the field of Number Theory. 

 

A study of the Hardy-Littlewood conjecture (infinity and distribution of first twins) and the Goldbach 

conjecture is developed in the article; it is based primarily on two primality theorems of congruence and 

compcongruence. The study arrives at the proof of the Hardy-Littlewood and Goldbach conjectures. In 

addition to the results achieved, the study opens up new areas of possible research in the field of Number 

Theory. 

 

 

1 Congruence Primalities 

 

1.1 The Congruence of Natural Numbers 

 

As is well known, the congruence relation [1.2.1 of (a)] modulus m is an equivalence relation defined 

on the set of integers Z as follows: if m is a fixed integer greater than 1, two integers a and b are said 

to be congruent modulus m if m|(a - b); m is called the modulus of congruence and is denoted by a ≡ 

b (mod m). 

In the field of natural numbers, it can also be equivalently stated that a ≡ b (mod m) if a and b give 

the same remainder in the integer division by m.  

For example, 24 ≡ 10 (mod 7) because they both give remainder 3 in the integer division by 7. All 

numbers congruent with each other modulo m constitute an equivalence class, called the congruence 

class modulo m: two natural numbers belong to the same congruence class if and only if they are 

congruent modulo m, that is, if and only if they divide by m and give the same remainder r. If, as in 

the example, the modulus is 7, seven classes are thus formed (as many as there are possible remainders 

in the division by 7) as follows [0], [1], [2], [3], [4], [5], [6].  Always limiting ourselves to the subset 

of Z consisting of the natural numbers, to establish to which class modulo m one of them belongs we 

divide it by m, the remainder indicating the class.  

It should be emphasised that for each m it is always the case that [m]mod m  = [0] mod m . 

 

Remark 1.1.2 From Number Theory we know that any natural number n will only be non-prime if it 

is divisible by one or more prime numbers less than or equal to the √𝑛. Since all even natural numbers, 

except 2, are non-prime because they are divisible by 2, it can be asserted that any odd natural number 

n > 4 will only be non-prime if it is divisible by one or more prime numbers odd less than or equal to 

. √𝑛. 

 

From here on, the variables p, p1, p2, . . . pi always denote prime numbers and ℙ(𝑀) the set of odd 
prime numbers less than or equal to the number M. 
 

1.2 Congruence Primality Theorem 
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Enunciation 1.2.1 ∀ N0 , n0 ∈ N with N0  ≥ 3, 0 ≤ n0  ≤ N0  - 3 and even if N0  is odd or vice versa, 

with ℙ(√(𝑁0 − 𝑛0))  set of odd prime numbers ≤ √(𝑁0 − 𝑛0),   a necessary and sufficient 

condition for N0  - n0  to be a prime number is that n0 ≢ N0 (mod pi ) ∀ pi ∈ ℙ(√(𝑁0 − 𝑛0)) 

or that ℙ(√(𝑁0 − 𝑛0))  is an empty set. 

 

Proof. According to the congruence of natural numbers (1.1) if N0 and n0 do not belong to the same 

congruence class modulo pi for all pi ∈ ℙ(√(𝑁0 − 𝑛0)), this means that N0 - n0 (an always odd natural 

number) is not divisible by any odd prime number less than or equal to the √(𝑁0 − 𝑛0) and that 

therefore, according to observation (1.1.2), N0 - n0 is a prime number. If instead ℙ(√(𝑁0 − 𝑛0)) 

results in an empty set (with n0 = N 0 - 3, N0 - 4, N0 - 5, N0 - 6, N0 - 7, N0 - 8) the number N0 - n0 

cannot be divided by any prime and is therefore prime.   

Conversely, if N0 - n0  is a prime number, it will not be divisible by any other lower, equal or non-

existent odd prime number of the √(𝑁0 − 𝑛0)  and therefore N0 and n0 will always result non congrui 

∀𝑝𝑖 ∈ ℙ(√(𝑁0 − 𝑛0)). 

 

We set n0 ≤ N0 -3 because with n0 = N0 - 1  one would have that N0 - n0 = 1 which, as is known, is 

neither a prime nor a compound number, and with n0 = N0 - 2 one would have that N0 and n0  would 

both be even or odd contrary to the hypothesis. In order then to prevent n0  from taking negative 

values, it must be N0  ≥ 3.   

 

Remark 1.2.2 If, instead of referring to the set ℙ(√(𝑵𝟎 − 𝒏𝟎)) we want to refer, for the needs of 

successive demonstrations, to the set ℙ(√𝑵𝟎), the theorem (1.2.1) is transformed into the corollary 

(1.2.3) 

 

Given a number N0  N, a number n0  N, smaller than N0  and such that (N -n00 ) is odd is called the 

Prisotto of N0 if it turns out that n0 ≢ N0 (mod pi ) ∀ pi ∈ ℙ(√(N0)). 

 

Corollary 1.2.3 ∀ N0 , n0  ∈ N with N0  ≥ 9, 0 ≤ n0  ≤ N0  - pmax and even if N0  is odd or vice versa, 

with ℙ(√(𝑁0))  set of odd prime numbers ≤ √(𝑁0)   and with pmax prime number higher than 

ℙ(√(𝑁0)), a necessary and sufficient condition for N0  - n0  to be a prime number is that n0  is a 
number prisotto of N0. 

 

Proof. substituting ℙ(√(N0)) a ℙ(√(N0 − n0)), in contrast to theorem (1.2.1), the numbers n0  

smaller than N0 and belonging to the interval [N0 -pmax ., N0 -3] are not considered since they all have 

at least one congruence class mod pj , with p j ℙ(√(N0)), equal to that of the same modulus of N0 

. In fact for the n0  [N0 - pmax ., N0 -3] , N0 - n0   will belong  to the interval [3, pmax ] and thus be 

equal to a prime or compound number belonging to this interval; in the first case according to modular 

arithmetic if N0 - n0 = pj , with p j ℙ(√(N0)) ⸦ [3, pmax .] this implies that [N0 ] mod pj - [n0 ] mod 

pj = [pj ] mod pj = [0] whence the congruence mod pj of n0 with N0 ; if instead N0 - n0 is equal to a 

compound number m* pj  , with p j ℙ(√(N0)) ⸦ [3, pmax .], we will have that [N0 ] mod pj - [n0 ] 

mod pj = [m] mod pj * [pj ] mod pj = [m] mod pj *[0] = [0] whence the congruence mod pj of n0 with 

N0 .  

Conversely, if N0 - n0  is a prime number, belonging to the interval ] pmax , N0 ], it as prime will not 

be divisible by any other odd prime number less than or equal to pmax and thus the √(𝑁0)  and 

therefore N0 and n0 will always be non congrui ∀𝑝𝑖 ∈ ℙ(√(𝑁0)). 

 

He placed himself N0 ≥ 9 in quanto per valori inferiori  pmax would not be defined. 
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According to Corollary 1.2.3 we can state that the numbers n0  prisotto of N0 , subtracted from N0 , 

result in all prime numbers in the interval ] pmax , N0 ]. 

 

Remark 1.2.4 Obviously, with N0,  being equal, the difference between the set of incongruous 

numbers less than N0   modulo ℙ(√(𝑵𝟎 − 𝒏𝟎))   and that of the numbers prisotto of N0   is given by 

all n0  = N - p0 i  with p j ℙ(√(𝑵𝟎)). In practice, the number of all odd primes less than or equal to 

N0  is equal to the sum of the number of prisotto numbers of N0 and that of p j ℙ(√(𝑵𝟎)). 

 

Remark 1.2.5 Both theorem (1.2.1) and corollary (1.2.3) tell us nothing about the existence of at 

least one incongruous n0  .   However, according to postulate [6.3 of (b)] of Bertrand (later proved 

by Pafnuty Chebyshev, Srinivasa Ramanujan and Paul Erdős), which states that for each n ≥ 2 there 

exists at least one prime p such that n < p < 2n, we can state, with respect to the corollary (1.2.3), 

that in the interval ] pmax , N0 ] there will always exist at least one prime being 2 p max≤ 2√𝑁0  ≤  𝑁0 

for 𝑁0 ≥ 4. Consequently, in the interval ]0, N0 - pmax [ there will always exist at least one n0  prisotto 

of N0.  
 

1.3   The Compcongruence of Natural Numbers  

 

We now introduce Complementary Congruence (compcongruence) modulus m as the 

correspondence relation defined on the set of integers Z as follows: if m is a fixed integer greater than 

1, two integers a and b are said to be compcongruent modulus m if m|(a + b); m is called the modulus 

of the compcongruence and we will denote it by a ∥ b (mod m). 

 

In the field of natural numbers, one can also equivalently state that a ∥ b (mod m) if a and b give two 

complementary remainders with respect to m in the integer division by m. For example, 24 ∥ 39 (mod 

7) because they give as remainders in the integer division by 7 respectively 3 and 4, i.e. two 

complementary numbers with respect to 7.  

 

1.4 Compcongruence Primality Theorem 

 

Enunciation 1.4.1 ∀ N0 , n0 ∈ N with N0  ≥ 2, 0 ≤ n0  ≤ N0  - 1 and even if N0  is odd or vice versa, 

with ℙ(√(𝑁0 + 𝑛0))  set of odd prime numbers ≤ √(𝑁0 + 𝑛0),   a necessary and sufficient 

condition for N0  + n0  to be a prime number is that n0  ∦ N0 (mod pi ) ∀ pi ∈ ℙ(√(𝑁0 + 𝑛0)) 

or that ℙ(√(𝑁0 + 𝑛0))  is an empty set. 

 

Proof. According to the compcongruence of natural numbers (1.3), if N0 and n0 are not 

compcongruent modulo pi for all pi belonging to the set ℙ(√(𝑵𝟎 + 𝒏𝟎)) , this means that N0 + n0 is 

not divisible by any prime number less than the √(𝑵𝟎 + 𝒏𝟎) and that therefore, according to 

observation (1.1.2), N0 + n0 is a prime number. If, on the other hand ℙ(√(𝑵𝟎 + 𝒏𝟎)) is an empty set, 

the number N0 + n0 cannot be divided by any prime and is therefore prime.   

Conversely, if N0 + n0  is a prime number, it will not be divisible by any other lower, equal or non-

existent odd prime number of the √(𝑁0 + 𝑛0)  and therefore N0 and n0 will always be 

non compcongrui ∀𝑝𝑖 ∈ ℙ(√(𝑁0 + 𝑛0)). 
 

We set N0 ≥ 2 because with N0 =1 and n0 =0 we would have N +n00 =1, a non-prime and non-

compound number. 

 

https://it.wikipedia.org/wiki/Srinivasa_Ramanujan
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Remark 1.4.2 If, instead of referring to the set ℙ(√(𝑵𝟎 + 𝒏𝟎)) we want to refer, for the needs of 

successive demonstrations, to the set ℙ(√𝟐𝑵𝟎) the theorem (1.4.1) is transformed into the corollary 

(1.4.3). 

 

That is, given two numbers N0 , n0  ∈ N, with n0  < N0   and such that (N0 +n0 ) is odd, if it turns out 

that every odd prime number p ≤ √(2𝑁0) does not divide the number (N0 +n0 ) it means that it is 
prime. 
 

Given a number N0  N, a number n0  N, less than or equal to N0  and such that (N +n00 ) is odd is 

called the Prisopra of N0 , if it turns out that n0 ∦ N0 (mod pi ) ∀ pi ∈ ℙ(√(2N0)). 

 

Corollary 1.4.3 ∀ N0 , n0 ∈ N with N0  ≥ 2, 0 ≤ n0  ≤ N0 -1 and even if N0  is odd or vice versa, with 

ℙ(√(2𝑁0))  set of odd prime numbers ≤ √(2𝑁0), a necessary and sufficient condition for N0  + 
n0  to be a prime number is that n0 is a prisopra of N0 . 

 

Proof. Extending the set of prime numbers of theorem (1.4.1) from ℙ(√(𝑵𝟎 + 𝒏𝟎)) a ℙ(√(𝟐𝑵𝟎)) 

and indicating by ℙ(𝛥2𝑁0) the set of primes in ℙ(√(2𝑁0)) e non in ℙ(√(𝑁0 + 𝑛0))nothing 

changes since for each of the numbers n0 (incompcongrui con 𝑁0 moduli ℙ(√(𝑁0 + 𝑛0))

 
 

tali che 𝑁0+𝑛0= 𝑝𝑗 , with 𝑝𝑗 belonging to the interval [N0 ,2N0 ], it can never be the case that n0 is 

compcongruent with N0  modules ℙ(𝛥2𝑁0), e cioè che [𝑁0]𝑚𝑜𝑑 𝑝𝑖
+ [𝑛0]𝑚𝑜𝑑 𝑝𝑖

= [0]𝑚𝑜𝑑 𝑝𝑖
, for at 

least one 𝑝𝑖  ℙ(𝛥2𝑁0) . In fact, bearing in mind that √2𝑁0  ≤  𝑁0 con N0  ≥ 2 and that therefore 

all the primes 𝑝𝑖 belonging to the set ℙ(𝛥2𝑁0)  are ≤ N0  we have that for each 𝑝𝑗 belonging to the 

interval [N0 ,2N0 ] results [𝑝𝑗]𝑚𝑜𝑑 𝑝𝑖
 ≠ [0] always being 𝑝𝑖 𝑒 𝑝𝑗  two prime numbers and different 

from each other. Consequently for each of the numbers n0 tali che 𝑁0+𝑛0= 𝑝𝑗, since modular 

arithmetic always results in [N0 ] mod pj + [n0 ] mod pj = [𝑝𝑗]𝑚𝑜𝑑 𝑝𝑖  and the latter is always different 

from zero, it can be stated that n0 is prisopra of  N0 .  

Conversely, if N0 + n0  is a prime number, it will not be divisible by any other lower, equal or non-

existent odd prime number of the √(2𝑁0)  and therefore N0 and n0 will always be non compcongrui 

∀𝑝𝑖 ∈ ℙ(√(2𝑁0)). 
 

Remark 1.4.4 Both the theorem (1.4.1) and the corollary (1.4.3) tell us nothing about the existence 

of at least one n0  prisopra of N0 .   But on the basis of Bertrand's postulate [6.3 of (b)] we can state 

that in the interval [N0 , 2N0 ] there will always exist at least one prime and consequently in the interval 

]0, N0 ] there will always exist at least one n0  prisopra of N0. 
 

1.5 Numbers and their congruence classes 

 

Number Theory tells us that just as there exists in positional number systems (e.g. the decimal system) 

a bi-univocal correspondence between all possible numbers expressible with n digits (and therefore 

belonging to the interval ]0, 10n -1]) and all possible combinations (10n ) of the 10 digits, similarly 

there exists a bi-univocal correspondence between all possible numbers of the interval ]0, 𝑝𝑚𝑎𝑥#], 

with pmax any prime and pmax # its prime, and the combinations of the congruence classes of these 

numbers having for modulus the single primes less than and equal to pmax . The existence of this 

biunivocal correspondence is easily proved by resorting to the Chinese Remainder Theorem [2.3.3 of 

(b)] and inserting as modules of the system of equations pmax and all primes less than it.  

 

Remark 1.5.1 We will call the table number-classes 𝒑𝒎𝒂𝒙 the table which, for each number in the 

interval ]0, pmax#] associates the combination of the congruence classes of this number having for 

modulus the single prime numbers less than and equal to pmax . 
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For illustrative purposes, let us consider (see Appendix A) a number-class table 7 containing for 

each number the corresponding combination of its 4 congruence classes mod 2, mod 3, mod 5 and 

mod 7. 

The above-mentioned bi-univocal correspondence can be verified in this table. E.g. the combination 

1-2-2-3 of the congruence classes mod 2, mod 3, mod 5 and mod 7 corresponds only to the number 

17 in the interval [1, 210], just as the number 151 corresponds only to the combination 1-1-1-4 of the 

same congruence classes in the interval [1, 210].  

 

As we shall see later, the Number-Class Table pmax is introduced in this study in order to 

calculate the densities of the numbers prisotto and prisopra of N0 . 

 

1.6 From the Number-Class Table pmax to Primalities 

 

Is there a criterion for deducing from the number-class table pmax and from the information contained 

therein how many, in addition to the modules {2,3,.....,. pmax } on which the table is built, are the 

prime numbers less than or equal to any N0 ]0, 𝑝𝑚𝑎𝑥#] and those within the interval [N0 , 2 N0 ] ? 

 

Remark 1.6.1 Among the various possible criteria, the one that interests us for our subsequent 

demonstrations consists in the application of the corollary (1.2.3) of the Primality of Congruence and 

that (1.4.3) of the Primality of Compongruence according to which the number of the odd primes less 

than or equal to N0   is, minus the primes less than the √(𝑵𝟎) 𝑒 𝑐𝑖𝑜è 𝑖 modules {2,3,.....,. pmax } on 

which the table is constructed, is equal to that of the numbers in the table prisotto of N0 while the 

number of primes in the interval [N0 , 2 N0 ] is equal to that of the numbers prisopra of N0. 

 

 From this observation, it follows that in order to derive from the number-class table pmax the prime 

numbers less than or equal to N0 using the Primality of Congruence criterion, a condition must be 

imposed that binds N0   to the number-class table pmax and that is that the table's modules must be 

exactly all the primes less than or equal to the √(N0). 

 

In the case of our example table [1, 210] we can say that only for the N0 such  that 7  ≤ √(𝑁0) < 11, 

i.e. for N0  greater than or equal to 49 and less than 121 we can say that the numbers in the table n0 

prisotto of N0 are such that N0 - n0  is a prime number. 

 

Similarly, to infer from the table-interval ]0, 𝑝𝑚𝑎𝑥#] and from the information contained therein how 

many prime numbers there are in the interval [N0 , 2N0 ] with   N0 ]0, 𝑝𝑚𝑎𝑥#] using the criterion 

(Corollary 1.4.3) of the Primality of Compcongruence we must impose that the modules {2,3,.....,. 

pmax } of the table are exactly all the primes less than or equal to the √(2N0). With this condition we 

will have that the numbers of the table incompcongruent less than N0   are pri N0 such that  such that 

N0 + n0  is a prime number. 

 

In the case of our table [1, 210] for example we can say that only for the N0 such  that 7  ≤ √(2N0) < 

11 and i.e. for N0  greater than or equal to 25 and less than 61 we can say that the numbers n0 

incompcongruous less than N0  are  prisopra of N0 and i.e. that added to N0  give the prime numbers 

of the interval [N0 , 2N0 ]. 

 

1.7 From 𝑵𝟎 to the primes of the interval ]0, 2𝑵𝟎] 

 

If then, fixed at any 𝑁0 ϵ 𝑁  greater than 49, we want to find out how many prime numbers are less 

than or equal to 𝑁0 we must first find the highest prime number 𝑝𝑚𝑎𝑥 less than or equal to √(N0)  

and then consider the number-class table pmax ]0, pmax#], where pmax# is the prime of pmax and 

corresponds to the product of prime numbers ≤ 𝑝𝑚𝑎𝑥 Since the prime 𝑝𝑚𝑎𝑥# coincides with the prime 

√(𝑵𝟎) # in the remainder of the study we will write either ]0, 𝑝𝑚𝑎𝑥#] o ]0, √(𝑵𝟎) #] to indicate the 
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same Number-class table pmax . 

 

Remark 1.7.1 The condition that N0 is greater than or equal to 49 follows from the requirement that 

N0 belongs to the interval ]0, 𝑝𝑚𝑎𝑥#].  

 

From what is written in observation (1.6.1) the number of primes less than or equal to N0  is given to 

us, minus the primes less than the √(𝑵𝟎) e cioè i forms 2, 3, ....., 𝑝𝑚𝑎𝑥   on which the table is 

constructed, by that of the numbers in the table prisotto of N0 , a number which, according to 

observation (1.2.5) will always be equal to or greater than 1. 

 

E.g. with 𝑁0 = 315 we will have that √315=17.746 and therefore 𝑝𝑚𝑎𝑥 will be equal to 17, 𝑝𝑚𝑎𝑥# 

(2*3*5*7*11*13*17) will equal 510510 and the number 315 will correspond, in the interval [0 , 

𝑝𝑚𝑎𝑥#], one and only one combination of its congruence classes mod 2, mod 3, mod 5, mod 7, mod 

11, mod 13 and mod 17. All n0 less than 𝑁0 and incongruent with it with respect to pi ≤ 𝑝𝑚𝑎𝑥i.e. all 

n0 prisotto of N0, sottratti ad  N0 result in all prime numbers less than N0 , except the primes 

2,3,5,7,11,13,17 on which the table is built. On the other hand, according to the corollary (1.2.3) and 

observation (1.6.1), nothing can be said about the other numbers della tabella m0 magggiori di 315 

and incongruous with it  p modulesi belonging to ℙ (√(315)). 

 

Similarly, if we want to find, via a number table 𝑝𝑚𝑎𝑥how many prime numbers there are in the 

interval [N0 , 2N0 ] with any N0 ≥ 121, we must first find the highest prime number 𝑝𝑚𝑎𝑥 less than 

the √2𝑁0 and then consider the number-class table 𝑝𝑚𝑎𝑥 ]0, √(2𝑵𝟎)#]. Again, the condition that 𝑁0 

is greater than or equal to 121 follows from the requirement that 2N0 belongs to the interval ]0, 

√(2𝑵𝟎)#]. According to observation (1.6.1), the number of primes in the interval [N0, 2N0 ] is given 

to us by that of the numbers in the table prisopra of N0 , a number which according to observation 

(1.4.4) will always be equal to or greater than 1. 

 

If we maintain the previous example of N0 = 315, we must in this case calculate the √2 ∗ 315 which 

is 25.1, from which it follows that 𝑝𝑚𝑎𝑥 will be equal to 23, √(2𝑵𝟎)# (equal to 

2*3*5*7*11*13*17*19*23) will be equal to 223092870 and the number 315 will correspond, in the 

interval ]0, √(2𝑵𝟎)#], one and only one combination of its congruence classes mod 2, mod 3, mod 

5, mod 7, mod 11, mod 13, mod 17, mod 19, mod 23. All n0 less than 𝑁0 and incompcongruent with 

it, i.e. all n0 prisopra of N0, added toN0 will result in all prime numbers in the interval [N0 , 2 N0 ]. 

On the other hand, according to the corollary (1.4.3) and observation (1.6.1), nothing can be said 

about the other numbers della tabella m0 greater than 315 and incompcongruent with it  modules 

ℙ (√(315)). 

 

2 The distribution of prime numbers 

 

2.1 Fundamental prime number  theorem 

 

Gauss's Conjecture, dating back to 1792 and later becoming the Prime Number Theorem (NPT), on 

the distribution of prime numbers is:  

 

(2.1.1)   𝜋(𝑁) ≈
𝑁

𝑙𝑜𝑔𝑁
≈ ∫

𝑑𝑡

𝑙𝑜𝑔𝑡

𝑁

2
≈ 𝐿𝑖(𝑁) 

 

where π(N) is the number of primes less than or equal to N. 

 

This conjecture was first proved in 1986 by Hadamard and de La Vallée Poussin using methods from 

the theory of complex functions related to the properties of Riemann's ζ-function. Mathematicians of 
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the time, and in particular G. H. Hardy, believed that complex analysis was necessarily involved in 

the Theorem and that methods with only real variables were to be considered inadequate. But in 1949, 

Erdös and Selberg [3.4 of (a)] independently published an elementary proof (i.e. with only real 

variables), based on the combinatorial technique, of the Prime Number Theorem.  

 

The demonstration of Selberg - Erdős [3.4 of (a)] thus brought into play the supposed superiority 

(depth) of complex analysis for the demonstration of NPT, showing that even technically elementary 

methods, which we have also adopted in this study, have their demonstrative effectiveness.  

 

2.2 The average density of the n0 incongruous of N 0 in the table ]0, √(𝑵𝟎)#]  

 

Having fixed any 𝑵𝟎 𝛜 𝑵  greater than 49, we consider (see paras. 1.6 and 1.7) the relevant number-

class table 𝑝𝑚𝑎𝑥 of the interval ]0, 𝑝𝑚𝑎𝑥 #], where 𝑝𝑚𝑎𝑥 is the highest prime number less than or 

equal to the √(𝑁0), and calculate the number of all (greater than and less than 𝑁0) the n0 incongruous 

of N 0 present in the table.  

 

We then eliminate from this table the rows that have one or more classes of congruence of the p 

modulesi (2, 3, 5, ..... , 𝑝𝑚𝑎𝑥) equal to the class corresponding to the remainder of N0 for the same 

modules. 

 

The numbers M in the table, not eliminated through the previous sieve, can then only be those which 

in the number-class table pmax have for each pi 𝛜 ℙ(√(𝑁0)) one of the pi -1 possible congruence 

classes other than the corresponding N0 . (If e.g. (N0 ) mod7 = 3, (M) mod7 must be equal to one of 

the 6 (7-1) other possible congruence classes: 0,1,2,4,5,6) 

 

The rows of the table that have not been deleted will then, according to the combinatorial calculation, 

be: 

 

(2.2.1)   ∏ (𝑝 − 1)
𝑝𝑚𝑎𝑥
𝑝=2       

 

Thus, (2.2.1) gives us the quantity of all M numbers in the table incongruous (less than and greater 

than) than N0 for the p modules onlyi belonging to the set ℙ(√(𝑁0)). 

 

Let us now calculate the average density Dnc]0, √𝑁0 #]   of these numbers M existing in the interval 

]0, √(𝑁0) #] with √(𝑁0) # = 2*3*.......*𝑝𝑚𝑎𝑥can be written: 

 

 

(2.2.2) Dnc]0, √𝑁0 #]    = 
∏ (𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=2

2∗3∗…∗𝑝𝑚𝑎𝑥
 = 

∏ (𝑝−1)
𝑝𝑚𝑎𝑥
𝑝=2

∏ 𝑝
𝑝𝑚𝑎𝑥
𝑝=2

=  ∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2  

 

[formula this multiplied by √(𝑁0) # corresponds to the Euler function φ(n) with n=√(𝑁0) #, and 

gives the number of coprimes less than √(𝑁0) #, a number which also includes the number of primes 

less than N0 except for the primes belonging to the set ℙ(√(𝑁0))] 

 

On the basis of the corollary (1.2.3) of the Primality of Congruence and the fact that all numbers M 

less than N0 (MN0 ) are prisotto of N0, we can state that, for each of these numbers MN0 , N0 -MN0  is 

a prime number and that the average density 𝐷𝑛𝑐]0,𝑁0]
1) of M N0  in the interval ]0, N0 ] is given by:  

 

(2.2.3)  𝐷𝑛𝑐]0,𝑁0] =
Q(𝑀𝑁0)  

𝑁0
    denoting by Q(M )N0    the number of MN0   present in the interval ]0, 

N0 ]. 

https://it.wikipedia.org/wiki/G._H._Hardy
https://it.wikipedia.org/wiki/Analisi_complessa
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As per observation (1.2.4) the number of all primes π(N )0 less than or equal to N0 is given by the 

sum of the number of MN0  and that of all p j ℙ(√(𝑁0)) which, as we know, are not among the N0  

- MN0 . 

   

We then know from NPT (2.1) that the average density 𝐷𝑝𝑟𝑖𝑚𝑖𝑁0 of the prime numbers less than N0 

, which coincides, barring the pi  belonging to the set ℙ(√(𝑁0)), with the average density 𝐷𝑛𝑐𝑁0 of 

the numbers MN0  prisotto of N0 is given by: 

 

(2.2.4)   𝐷𝑝𝑟𝑖𝑚𝑖]0,𝑁0]  =  
𝜋(𝑁0)

𝑁0
=

1

𝑙𝑜𝑔𝑁0
 ≈ 𝐷𝑛𝑐]0,𝑁0] 

 

That is, for the density DprimiN0 one must consider, in addition to the numbers MN0 less than N0 and 

incongruous with it, also the pi belonging to the set ℙ(√(𝑁0)) and consequently Dprimi always 

resultsN0 > 𝐷𝑛𝑐𝑁0. Let us then calculate the error that is made by setting Dprimi  = DncN0  . According 

to NPT (2.1) we can write: 

 

( 2.2.5 ) 𝐷𝑛𝑐]0,𝑁0] =
(

𝑁0
𝑙𝑜𝑔𝑁0  

  −  
√𝑁0

𝑙𝑜𝑔√𝑁0
)

𝑁0
               e 𝐷𝑝𝑟𝑖𝑚𝑖]0,𝑁0] =

1

𝑙𝑜𝑔𝑁0
 

 

Observation 2.2.6 Having ascertained that it always results 𝐷𝑝𝑟𝑖𝑚𝑖]0,𝑁0]  > 𝐷𝑛𝑐]0,𝑁0]  one can 

easily calculate that the percentage error in positing 𝐷𝑝𝑟𝑖𝑚𝑖]0,𝑁0] = 𝐷𝑛𝑐]0,𝑁0]   is 20% for N0  = 102 

, 2% for N0  = 104 , 0.02% for N0  = 108 , and that it is gradually decreasing for increasing values of 

N0  . 
 
 

3 The Proof of the Hardy-Littlewood Conjecture 

 

3.1 The Twin Numbers 

 

Every prime number greater than 2, likewise every odd number, can be written as the sum or 

difference of an even number and 1. In the case of a pair of prime twins there will obviously be a 

single even number which when added to 1 and subtracted by 1 will give rise to the prime twins of 

the pair.  

 

We call an even twin and denote by the symbol PG any even number n ∈ N such that n+1  and n-1 

are two prime numbers. 

 

3.2 The Equal Twins Theorem 

 

Definition 3.2.1 ∀ n0  ∈ N, even and greater than 4, with ℙ(√(𝑛0 + 1))  set of odd primes ≤ 

√(𝑛0 + 1),   a necessary and sufficient condition for n0  +1 and n0  -1 to be twin primes is that 

n0 ≢ 1(mod pi ) and n0 ∦ 1(mod pi ) ∀ pi ∈ ℙ(√(𝑛0 + 1)) or that ℙ(√(𝑛0 + 1))  is an empty set. 

 

PROOF.  From the two Primality Theorems (1.2.1) and (1.4.1), assuming N0  = n0  and n0  = 1 it 

follows that, if 1 is incongruous and incompcongruous with n0 p modulesi  ∀pi ∈ ℙ(√(n0 + 1)),

e di conseguenza ∀pi ∈ ℙ(√(n0 − 1)) essendo  ℙ(√(n0 − 1)) ⊆ ℙ(√(n0 + 1)), or if 

ℙ(√(n0 + 1)) is an empty set, n0  +1 and n0  - 1 are twin primes.  

Conversely, if n0  + 1 and n0  - 1 are twin primes, this means that they are not divisible by any prime 

less than or equal to the √(n0 + 1) and that therefore, again by (1.2.1) and (1.4.1), n0  and 1 are 

incongruous and incompcongruous ∀pi ∈ ℙ(√(n0 + 1)) and therefore ∀pi ∈ ℙ(√(n0 − 1)).    
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We set n0  ≥ 4 because with n0  = 2 we would have that n0 - 1 = 1 which, as we know, is neither a 

prime nor a compound number. 

 

If instead of referring to the set ℙ(√(n0 + 1))  we refer, for the sake of subsequent demonstrations, 

to the set ℙ(√𝑁0) with N0 ∈ N e maggiore di 𝑛0the theorem (3.2.1) is transformed into the following 

corollary: 

 

Corollary 3.2.2 ∀ N0 , n0  ∈ N, with N0 ≥ 9 and with n0  even and pmax < n0  < N0,  with ℙ(√𝑁0)  

set of odd prime numbers ≤ √(𝑁0) and with pmax higher prime number than ℙ(√𝑁0), a 
necessary and sufficient condition for n0  +1 and n0  -1 to be twin primes is that 1 be an 
incongruous and incompcongruous number of n0 . 
 

Proof. substituting ℙ(√(𝑁0)) a ℙ(√(𝑛0 + 1))   the numbers n0   even less than pmax and such that n0  

± 1= pj  , with pj 𝛜 ℙ(√(𝑁0)), are not taken into account since, for the same p j ℙ(√(𝑁0)), they 

have a congruence class mod pj equal and/or complementary to that of equal modulus of 1. In fact, if 

n0  ± 1= pj according to modular arithmetic it will always be the case that [n0 ] mod pj ± [1] mod pj = 

[pj ] mod pj = [0] from which the congruence and/or compcongruence mod pj of 1 with n0 follows.  

Conversely, if n0   + 1 and n0   - 1 are twin primes greater than pmax and less than N0 it means both that, 

according to (1.2.1) and (1.4.1), n0  and 1 are incongruous and incompcongruous ∀pi ∈

ℙ(√(n0 ± 1)), but also that, since n0   + 1 and n0   - 1, as primes, are not divisible by any prime less 

than or equal to √(N0) , n0  and 1 are incongruous and incompcongruous anche ∀pi ∈ ℙ(√(N0)).  

He placed himself N0 ≥ 9 in quanto per valori inferiori  pmax would not be defined. 

 

Since in the interval ]0, N0], with N0 ≥ 9 and n0 > pmax there is always at least one prime (observation 

1.2.5), surely there will always exist an n01 and an n02 of which 1 is  incongruous and 

incompcongruous; but in order to prove the Hardy-Littlewood conjecture [1 of (c)] we must ascertain 

both that there exists at least one n = n =0  01   02  ,  ni.e. an even twin number (PG), smaller than N0 , 

of which 1 is incongruous and incompcongruous modulo pi for all pi belonging to the set ℙ(√(𝑵𝟎)), 

let it be that for  N0→ ∞ the number of PGs also tends to infinity with a definite relation.  

To this end, we resort to the study of the density of twin peers. 

   

3.3 The density of twin peers 

 

All n0   that satisfy the conditions of corollary (3.2.2) are even PG twins with the following 

characteristics: 

  

• the class of PG module 2, PG being even, is always zero while the class of 1 module 2 is 

always 1 (with complement equal to 1) and consequently 1 will always be incongruous and 

incompcongruous with PG module 2 

• PG classes of the next module (3, 5, 7, 11, etc.) present in ℙ(√(N0)) must not be equal to the 

classes of 1 and their p-1 complements of the same module (e.g. if PG=18 and 𝑁0 = 24 we 

have that ℙ(√N0) = {3}; [18]mod3 = 0 and its complement is still equal to 0, [1] mod3 =[1] and 

its complement is equal to 2 and therefore 1 is incongruous and incompcongruous with PG 

so that 18+1 and 18-1 are twin primes). 

 

 

Having said this, let us see how to calculate the number of PGs and thus of pairs of twins less than a 

𝑁0  49, a condition (see observation 1.7.1) arising from the necessity that 𝑁0 belongs to the interval 

]0, pmax #] where pmax is the highest prime number less than or equal to the √(N0) (1.5). 
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Having then selected any N0 ≥ 49 we denote by pmax the highest prime number of ℙ(√(N0)). Let us 

then consider the interval/table of natural numbers ]0, pmax #] and now eliminate from this table the 

rows that have: congruence class mod 2 equal to [1]; congruence classes of successive modules (3, 5, 

..... , pmax ) equal to the classes of 1 and their complements p-1 for the same modules.  

The numbers M of the number-classes table pmax , not eliminated through the previous sieve, can then 

only be those which in their corresponding combination of congruence classes present only the class 

[0] of the two possible congruence classes mod 2 and one of the pi -2 (for each pi belonging to the set 

ℙ(√(N0))) possible classes of congruence of the successive modules (3, 5, ..... , pmax ), that is, with 

the exclusion of the classes of 1 and their complements for the same modules (if e.g. (M) mod7 = 1 

with complement = 6, M  will not be a twin pair since (1) mod7=1 with complement = 6; to be a twin 

pair it is necessary that (M) mod7 is equal to one of the 5 (7-2) possible other classes of congruence: 

0,2,3,4,5) 

 

The rows (combinations of classes) of the table that have not been deleted will then, according to 

combinatorial calculation, be: 

 

(3.3.1)  ∏ (𝑝 − 2)
𝑝𝑚𝑎𝑥
𝑝=3       

 

Thus, (3.3.1) gives us the quantity of the numbers M of the table-interval ]0, pmax #] of which 1 is not 

congruent and is not compcongruent only for the modules pi belonging to the set ℙ(√(N0)) and 

nothing can be said about the possible (non) congruence and (non) compcongruence of 1 with these 

numbers with respect to the other modules pj   greater than pmax and belonging to the set 

ℙ(√(pmax#))). On the basis of the corollary (3.2.2) we can then state that all numbers M(PG) less 

than N0 , being non-congruent and non-compcongruent with 1 for all modules pi belonging to the set 

ℙ(√(N0)),  are even twin numbers (PG).  

 

Remark 3.3.2 By the same corollary (3.2.2) we also know, however, that these numbers M(PG), of 

which 1 is not compcongruent with respect to the modules  ℙ(√(𝑁0)), do not include the PGs relative 

to the pairs of primes less than the √𝑁0 and consequently their average density 

Dncn𝑐𝑜𝑚𝑝(𝑃𝐺)𝑁0 will always be lower than that Dp𝑔𝑁0 of all pairs of P twins𝐺𝑁0 less than N0 .  

 

We now calculate the average density 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑝𝑚𝑎𝑥 #] of the PG numbers existing in the interval 

]0, pmax #] of which 1 is non-congruent for the p-modulesi belonging to the set ℙ(√(N0)). Knowing 

that pmax # = 2*3*.......* pmax , we can write: 

 

(3.3.3)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑝𝑚𝑎𝑥 #]  =
∏ (𝑝−2)

𝑝𝑚𝑎𝑥
𝑝=3

∏ 𝑝
𝑝𝑚𝑎𝑥
𝑝=2

=
1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  

  

multiplying and dividing the second term of the same by (p-1) we obtain: 

 

(3.3.4)𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑝𝑚𝑎𝑥 #]  =
1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3 ∗

(𝑝−1)

(𝑝−1)
=

1

2
∗ ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3 ∗ ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3 =

∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2  ∗ ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  

 

In the last member of (3.3.4) we have substituted for  
1

2
∗ ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  the term  ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2   which, 

as we know from (2.2.2), corresponds, always for N0 ≥ 49, to the average density 𝐷𝑛𝑐]0,   √𝑁0 #] of the 

numbers M existing in the interval ]0, pmax #] not congruent of N0 for only the modules pi belonging 

to the set ℙ(√(𝑁0)); in these last three formulae pmax is the highest prime number less than or equal 

to the √(𝑁0) .  
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Let us then see if we can find a relationship between ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  e ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2  so that we can 

determine the value of 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑝𝑚𝑎𝑥 #] as a function of 𝐷𝑛𝑐]0,   √𝑁0 #].  

 

We can write: 

 

 

(3.3.5)  
∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3

∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2

 = ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3 ∗ ∏

𝑝

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=2  = ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3 ∗ 2 ∗ ∏

𝑝

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  = 2 ∗ ∏

𝑝∗(𝑝−2)

(𝑝−1)2

𝑝𝑚𝑎𝑥
𝑝=3  

 

 

where one can easily verify that the relationship between the term  ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  and that ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2   

for N0 =49 takes on the value 0.68359375, for N0 =9006001 the value 0.6601862196 and then, as N 

increases0 towards infinity, and thus extending the product over all prime numbers ≥ 3, it tends rapidly 

to decrease towards the constant of the prime twins C2 that appears in the Hardy-Littlewood 

conjecture on the distribution of prime twins: 

 

∏
𝑝∗(𝑝−2)

(𝑝−1)2𝑝≥3   = C2  ≈ 0.6601611813846869573927812110014 .......... 

 

We can therefore write: 

 

(3.3.6)  ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  ≈ 2*C *2∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2   

 

which substituted in (3.3.4) gives us:   

 

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝(𝑃𝐺) ≈ ∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2 ∗ ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  ≈ 2*C *2(∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2 )2 

 

from which according to (2.2.2): 

 

(3.3.7)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝(PG)]0,   𝑝𝑚𝑎𝑥 #] ≈ 2*C2 *( 𝐷𝑛𝑐]0,   √𝑁0 #])
2 

 

In this relation 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝(PG)]0,   𝑝𝑚𝑎𝑥 #] to the square of  Dnc the constant C2  changes little as N 

varies0 and thus as p variesmax #. The sieve that determines the density 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝(PG)]0,   𝑝𝑚𝑎𝑥 #]  in 

fact depends neither on N0 nor on pmax # but only on the incongruity and incompcongruity of 1 with 

an n0 =PG  ∀pi ∈ ℙ(√(n0 ± 1)). 

It can therefore be written with good approximation: 

 

( 3.3. 8)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑁0 ]  2 * 2*C≈( 𝐷𝑛𝑐]0, 𝑁0]])
2     

 

Comment 3.3.9 In (3.3.8) as stated in Comments (3.3.2) and (2.2.6) both 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑁0 ] and 

𝐷𝑛𝑐]0, 𝑁0]]  do not include the possible n0 for which n0 ± 1 are equal to the primes less than or equal 

to the √(𝑁0) but since this relation is always valid  ∀ 𝑁0 ∈ 𝑁 starting from N0  = 49 we can extend 

(3.3.8) to all the numbers n0  of which 1 is not congruous and not compcongruous and which when 

added to or subtracted from 1 result in the primes (except 2, 3, 5, 7) less than any N0 greater than 49. 

In fact for N0  = 49 (and therefore √49  = 7) the (3.3.8) concerns all the n0  of which 1 is  not congruous 

and not compcongruous that subtracted and added to 1 give as result the first twins between 8 and 

49; for N0  = 121 (and therefore √121  = 11), (3.3.8) concerns the first twins between 12 and 121; 
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for N0  = 169 (and thus √169  = 13), (3.3.8) concerns the first twins between 14 and 169; and we can 

continue in this way for all subsequent N0  equal to the squares of the first twins after 13.  

 

But it can be verified, assuming N0 =49 and thus C2 =0.6835, that (3.3.8) with an approximation of 

about 5%, also subsists taking into account primes 2, 3, 5, 7. In fact with N0 =49 we count 15 primes 

and 6 even twins whence (3.3.8) becomes: 

 
6

49
 ≈ 2*0,6835*(

15

49
)

2

 

 

0,1224 ≈ 0,1281 

 

Obviously, as N increases0 , subject to the validity of (3.3.8) for all primes greater than 7, the 

approximation decreases. 

Ultimately, we can then hold that ∀ N0 ∈ N greater than 49, (3.3.8) is valid for all primes less than 

N0 and therefore, substitute DpgN0 al posto di Dncncomp(PG)(N0) e 

𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0]] al posto di 𝐷𝑛𝑐]0, 𝑁0]], writing: 

 

(3.3.10) DpgN0 ≈ 2*C2 *(𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0]]) 2 

 

Being then for the NPT 𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0]] = 
1

𝑙𝑜𝑔𝑁0
 one can write: 

 

(3.3.11) DpgN0 ≈ 2*C2 *(
1

𝑙𝑜𝑔𝑁0
) 2 

 

and multiplying both members by N0 : 

 

(3.3.12) P𝐺𝑁0 ≈ N *2*C *02(
1

𝑙𝑜𝑔𝑁0
)2 

 

Appendix C gives an example of n0  of which 1 is  prisotto and prisopra  and the corresponding values 

of 𝐷𝑛𝑐]0, 𝑁0]], 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0]] and PGNO verified and calculated. 

 

For N0 = 49 the (3.3.12) P𝐺𝑁0  takes a value greater than 5 and, since N *0(
1

𝑙𝑜𝑔𝑁0
)2 an increasing 

function with N0 , P𝐺𝑁0 will always grow as N0 tends to infinity with a distribution (3.3.12) equal to 

that predicted by the Hardy-Littlewood conjecture [(c)]:   

 

π2 (x) ≈ x*2*C *2(
1

𝑙𝑜𝑔𝑥
)2 

 

The even twins, i.e. pairs of prime twins, are therefore infinite and (3.3.12) is their distribution law. 
 

 

4 The Proof of the Goldbach Conjecture 

 

Goldbach's conjecture assumes that for every even number 2N0  there exist one or more numbers n 

∈ N such that N0  - n  and N0  + n are two prime numbers whose sum is obviously equal to 2N0 . 

 

Given an N0 ∈ N we denote by the letter Ꞡ every number n ∈ N such that N0  - n  and N0  + n are 

two prime numbers. 

 

 

4.1 The Ꞡ Number Theorem of N0 
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Definition 4.1.1 ∀ N , n0  ∈ N and n0  even if N0 is odd or vice versa, with N0 ≥ 9, 0 ≤ n0  ≤ N0 - p 

,max  with pmax being a prime number higher than  ℙ(√2𝑁0),  where ℙ(√2𝑁0) è 𝑙′set of odd prime 

numbers ≤ √(2𝑁0), a necessary and sufficient condition for N0  - n0 and N0  + n0 to be two prime 
numbers is that n0 is a prisotto number and prisopra of N0  . 

 

Proof. From the Corollaries (1.2.3) and (1.4.3), placing the most restrictive conditions between the 

two, derive the necessary and sufficient conditions of the Theorem. Just as from Observations (1.2.5) 

and (1.4.4) it follows that there surely exists at least one n01 prisotto and at least one  n02 prisopra of 

N0 but  we cannot derive from them that esiste anche un  𝑛0  =  n01 = n02. 

To prove Goldbach's conjecture, on the other hand, it must be established that for every N0 ≥ 9 there 

exists at least un n0 =  n01 = n02 i.e. a number Ꞡ, prisotto and prisopra of N0 . 

  

Apart from the special case of a prime N0 and thus the certain existence of a Ꞡ = 0, we must therefore 

prove that for every N0 there always exists a Ꞡ prisotto and prisopra of N0 and thus that there always 

exist two prime numbers equidistant from N0 :  

 

p1   = N0 - Ꞡ 

  
p2   = N0 + Ꞡ  
 

and whose sum is evidently equal to 2N0 . 

 

To this end, we resort to the study of the density of numbers Ꞡ. 

 

4.2 The density of numbers Ꞡ 

 

Let us say right away that each Ꞡ must have the following characteristics:  

 

      - its class of modulus 2 must be equal to zero if N0 is odd, to 1 if N0 is even; 

      - its successive first module classes (3, 5, 7, etc.) less than or equal to the (√2N0) 

         must not be equal to the two classes corresponding to the remainder (for non-congruence) 

and its complement (for non-compcongruence) of N0 for the same modules (e.g. if  𝑁0 = 43 

and Ꞡ=30 we have that ℙ(√N0) = {3,5}; [43]mod3 = 1 with a complement equal to 2, [43]mod5 

= 3 with a complement equal to 2; [30] mod3 =[0] and [30] mod5 =[0]; therefore Ꞡ is prisotto 

and prisopra of N0 and therefore 73 (43+30) and 13 (43-30) constitute a pair of primes whose 

sum is equal to 2N0 ). 

 

Having said this, let us see how to calculate the number of Ꞡ less than an N 0 121 (a condition 

deriving as we know (1.7.1) from the need for 2N0 to belong to the interval ]0, √(𝟐𝑵𝟎) #]).  
Having then selected any N0 ≥ 121, we call pmax the highest prime number less than or equal to the 

√(𝟐𝑵𝟎). Let us then consider the table-interval of natural numbers ]0, pmax #] where pmax # is the 

prime of pmax and corresponds to the product 2*3*5*.......* pmax , a product that corresponds to the 

last number of the relevant Number-Class Table pmax (1.5.1) of bi-univocal correspondence between 

the numbers of the interval and the respective combinations of their congruence classes.  

 

Let us now eliminate from this table ]0, pmax #] each of the rows that has a congruence class mod 2 

equal to 0 or to 1 depending on whether N0 is even or odd, and/or congruence classes of the following 

modules (3, 5, ..... , pmax ) equal to one of the two classes corresponding to the remainder and 

complement of N0 for the same modules. 

The M-numbers in the table, which were not eliminated through the previous sieve, can then only be: 
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a) those which in the number-class table pmax have in their corresponding combination of 

congruence classes only one of the two possible congruence classes modulo 2 

b) those which in the number-class table pmax for each odd pi belonging to the set ℙ(√(𝟐𝑵𝟎)) 

and NOT FACTOR of N0 have in their corresponding combination of congruence classes one 

of the pi  -2 possible congruence classes of the modules 3, 5, ..... , pmax that is, with the 

exclusion of the two classes corresponding to the remainder and the complement of N0 for the 

same modules pi (if e.g. (N0 ) mod7 = 3 with complement = 4, (M) mod7 must be equal to one 

of the 5 (7-2) other possible congruence classes: 0,1,2,5,6)  

c) those which in the number-class table pmax for every odd pi belonging to the set ℙ(√(𝟐𝑵𝟎)) 

and FACTOR of N0 have in their corresponding combination of congruence classes one of 

the pi -1 possible congruence classes other than [0] that constitutes both the remainder and the 

complement of N0  for the same module-factors. 

 

The numbers N0 with factors other than pi odd belonging to the set ℙ(√(𝟐𝑵𝟎))and which therefore 

fall under category b) of the previous classification, are the prime numbers outside the set ℙ(√(𝟐𝑵𝟎)) 

or a multiple of them with coefficient 2n  or a simple power of 2.  

In particular, let us consider only the prime numbers that we will call N0pm indicating by ℙ their set. 

 

For the numbers N0pm then the rows (combinations of classes) of the table ]0, pmax #] not deleted, 

according to combinatorial calculation, will result to be: 

 

(4.2.1)  ∏ (𝑝 − 2)
𝑝𝑚𝑎𝑥
𝑝=3   

 

(4.2.1) thus provides us with the quantity of numbers M in the table that are incongruent and 

incompcongruent with N0pm , while nothing can be said about their possible (non) congruence and/or 

(non) compcongruence with N0pm with respect to the other modules pj  greater than pmax and belonging 

to the set ℙ(√(pmax#)). 

 

According then to the Ꞡ Number Theorem (4.1.1) we can state that all numbers M less than N0pm   

(MꞠ ) are prisotto and prisopra to N0pm  and are therefore numbers Ꞡ. 

  

Remark 4.2.2 By the corollary (1.2.3) and remark 1.2.4 we also know, however, that such numbers 

MꞠ , (prisotto and prisopra of N0pm ) do not include the possible n0 for which (N0pm - n0 ) is equal to 

a pi belonging to the set ℙ (√(2𝑁0𝑝𝑚)). Consequently, all numbers Ꞡ less than N0pm are always 

greater than/equal to the numbers MꞠ .  

 

The average density 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑝𝑚𝑎𝑥 #] of the numbers M existing in the interval ]0, √(2N0pm)#] 

uncongruent with N0pm for only p-modulesi belonging to the set ℙ (√(2N0pm)), knowing that 

√(2N0pm)# = 2*3*.......* pmax , can be written: 

 

(4.2.3)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] =
∏ (𝑝−2)

𝑝𝑚𝑎𝑥
𝑝=3

∏ 𝑝
𝑝𝑚𝑎𝑥
𝑝=2

=
1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  

 

multiplying and dividing the second term of the same by (p -1) we obtain: 
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(4.2.4)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] =
1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3 ∗

(𝑝−1)

(𝑝−1)
=

1

2
∗ ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3 ∗ ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3 =

∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2 ∗ ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  

 

In the last member of (4.2.4) we have substituted for  
1

2
∗ ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  the term  ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2   which, 

as we know from (2.2.2), corresponds, for N0 ≥ 121, to the average density 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #] of the 

numbers M  existing in the interval ]0, √(2N0pm)#] not congruent with N0pm for only the p-

modulesi belonging to the set ℙ (√(2𝑁0pm)); in these last three formulae pmax is obviously equal to 

the highest prime number less than the √(2𝑁0pm) .  

Let us then see if we can find a relationship between ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  e ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2  so that we can 

determine the value of 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] as a function of 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #]. 

 

We can write: 

 

 

(4.2.5)  
∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3

∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2

 = ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3 ∗ ∏

𝑝

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=2  = ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3 ∗ 2 ∗ ∏

𝑝

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  = 2 ∗ ∏

𝑝∗(𝑝−2)

(𝑝−1)2

𝑝𝑚𝑎𝑥
𝑝=3  

 

 

where one can easily verify that the relationship between the term  ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  and that ∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2   

for N0pm  = 127 (the first "prime" following 121) takes on the value 0.6767578125, for N0 =9006001 

the value 0.6601862196 and then, as N increases0 towards infinity, and thus extending the product 

over all prime numbers ≥ 3, tends rapidly to decrease towards the constant of the prime twins C2 that 

appears in the Hardy-Littlewood conjecture [(c)] on the distribution of prime twins: 

 

∏
𝑝∗(𝑝−2)

(𝑝−1)2𝑝≥3   = C2  ≈ 0.6601611813846869573927812110014 .......... 

 

We can therefore write: 

 

(4.2.6)  ∏
(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  ≈ 2*C *2∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2   

 

which substituted in (4.2.4) gives us: 

 

 

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] ≈ ∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2 ∗ ∏

(𝑝−2)

(𝑝−1)

𝑝𝑚𝑎𝑥
𝑝=3  ≈ 2*C *2(∏

(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2 )2 

 

whence: 

 

(4.2.7)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] ≈ 2*C2 *( 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #])
2 

 

In this relation 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] to the square of 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #]  the constant C2  changes little 

with the variation of N0 when this is equal to a prime number N0pm . If we apply (4.2.7) to the interval 

]0, N0pm ] it can be shown (Appendix B) that a negligible relative approximation of 0.1812 is made 

for N0pm  = 127, and rapidly decreasing for higher values of N0pm   (0.0404 for N0pm  = 1277). An 
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approximation which, incidentally, for low values of N0pm is compensated for by the corresponding 

higher values of C2 . 

It can therefore be written with good approximation: 

 

(4.2.8)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑁0 ]  2 * 2*C≈( 𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]))
2 

 

Regardless of the distribution law of (4.2.8), the full analogy existing (with N0 prime) between 

(3.3.7) and (3.3.8) concerning prime twins and (4.2.7) and (4.2.8)  leads us to believe that 

𝐃𝐧𝐜𝐧𝐜𝐨𝐦𝐩]𝟎,   𝐍𝟎 ] as well as 𝐃𝐧𝐜𝐧𝐜𝐨𝐦𝐩(𝐏𝐆)]𝟎,   𝐍𝟎 ] is surely greater than 1 (there being in each 

interval ]0, N0pm] with N0pm ≥ 127 well more than one pair of prime twins) and thus in line with 

Goldbach's conjecture. 

 

Remark 4.2.9 In (4.2.8) as stated in Remarks (4.2.2) and (2.2.6) both Dncncomp(Ꞡ)(N0pm) and 

𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]) do not include the possible n0 for which the (N0pm - n0 ) are equal to the primes less than 

or equal to the √(2𝑁0𝑝𝑚) but since this relation is always valid  ∀ 𝑁0𝑝𝑚 ∈ ℙ starting from N0pm  = 

127 (the first "prime" following 121) we can extend (4.2.8) to all prime numbers (except 2, 3, 5, 7, 

11, 13) less than any N0pm greater than or equal to 127. In fact for N0pm  = 127 (and thus √(2𝑁0𝑝𝑚) =

√254  = 15.93, pmax =13), (4.2.8) applies to all the n0  prisotto and prisopra of N0pm which when 

subtracted from N0pm result in primes between 14 and 127; for N0pm  = 131 (and therefore √262  = 

16.18, pmax =13), (4.2.8) concerns primes between 14 and 131; for N0pm  = 137 (and therefore √274 

= 16.55, pmax =13), (4.2.8) still concerns primes between 14 and 137; for N0 pm = 149 (and thus √298 

= 17.26, pmax =17), (4.2.8) still concerns primes between 18 and 149; and we can continue like this 

for all subsequent N0pm .  

 

But it can be verified, assuming N0pm =127 and thus C2 =0.6767, that (4.2.8), with an approximation 

of about 14%, also holds if we take into account the primes 2, 3, 5, 7, 11, 13. In fact with N0pm =127 

there are 31 primes and 9 numbers Ꞡ whence (4.2.9) becomes: 

 
9

127
 ≈ 2*0,6767*(

31

127
)

2

 

 

0,07086 ≈ 0,08063 

 

Obviously, as N increases0pm , subject to the validity of (4.2.8) for all primes greater than 13, the 

approximation decreases. 

Ultimately  ∀ N0pm ∈ ℙ e greater than or equal to 127 we can still consider (4.2.8) to be valid even 

for primes less than N0pm and thus, substitute in it the density DꞠ(𝑁0𝑝𝑚) of the numbers Ꞡ ≤ N0pm instead 

of 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑁0 ]  and the density 𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0𝑝𝑚 ]  of primes less than or equal to N0pm  in place of 

𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]). 

Consequently, the relation follows from (4.2.8): 

 

(4.2.10) DꞠ(𝑁0𝑝𝑚)  ≈ 2*C2 *(𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0𝑝𝑚 ]) 2 

 

Being then for the NPT 𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0𝑝𝑚 ] = 
1

𝑙𝑜𝑔𝑁0
 one can write: 

 

(4.2.11) DꞠ(𝑁0𝑝𝑚)  ≈ 2*C2 *(
1

𝑙𝑜𝑔𝑁0𝑝𝑚
) 2 
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To calculate the number MꞠ(𝑁0𝑝𝑚)  of the numbers Ꞡ smaller than N0pm multiply both members of 

(4.2.11) by N0pm :  

 

(4.2.12) MꞠ(𝑁0𝑝𝑚) = DꞠ(𝑁0𝑝𝑚) ∗ 𝑁0𝑝𝑚 ≈ 𝑁0𝑝𝑚*2*C2 *(
1

𝑙𝑜𝑔𝑁0𝑝𝑚
) 2 

 

Appendix D gives an example of n0  prisotto and prisopra of N0pm  and the corresponding values of 

𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ], 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0]] and MG verified and calculated. 

 

It is emphasised that the relation (4.2.12) bears a close resemblance to Vinogradov's theorem1 . 
 

Remark 4.2.13 Since the expression N *0pm(
1

𝑙𝑜𝑔𝑁0𝑝𝑚
)2  for N0pm = 127 takes on a value approximately 

equal to 5, which increases for N0pm > 12 and, the product 2*C2 is always greater than 1, MꞠ(𝑁0𝑝𝑚) 

 will always be greater than or equal to 1. This is confirmed by the fact that with N0pm  prime there 

will always be at least one number Ꞡ = 0. 

 

It follows from (4.2.12) that for all prime numbers N0pm  the numbers equal to their doubles (2*N0pm 

) are always the sum of one or more pairs of primes. 

 

For N0 other than N0pm the 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0 #] (4.2.3) is modified in the expression: 

 

(4.2.14)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0 #]  =
1

2
∗ ∏

(𝑝𝑙−2)

𝑝𝑙
3≤𝑝𝑙≤𝑝𝑚𝑎𝑥

∗ ∏
(𝑝𝑗−1)

𝑝𝑗
3≤𝑝𝑗≤𝑝𝑚𝑎𝑥

 

 

in which the first pj belonging to ℙ(√(2𝑁0)) appear distinct in the pj   equal to the factors of N0 and 

in those pl   that are not (see section 4.2 (b) and (c)). But (4.2.14) can also be written like this: 

 

(4.2.15)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0 #]  =
1

2
∗ ∏

(𝑝𝑖−2)

𝑝𝑖
3≤𝑝𝑖≤𝑝𝑚𝑎𝑥

∗ ∏
(𝑝𝑗−1)

(𝑝𝑗−2)3≤𝑝𝑗≤𝑝𝑚𝑎𝑥
 

 

Knowing that the value of 𝑝max   of (4.2.3) and (4.2.15) remains the same for each interval ]0, N0 ] 

with N0 such that it results 𝑝max  < √2𝑁0  < 𝑝max 𝑠𝑢𝑐𝑐  where 𝑝max   is the highest prime less than 

√2𝑁0𝑝𝑚    e 𝑝max 𝑠𝑢𝑐𝑐  the first immediately following 𝑝max,, by comparing (4.2.15), where 

 
1 Vinogradov's theorem [(d)] states that any sufficiently large odd integer can be written as the sum 

of c primes with c ≥ 3 . The above theorem is only proved for c ≥ 3, whereas for c = 2 it becomes a 

(Goldbach's extended) conjecture and the number of pairs of equal primes whose sum equals an even 

n is expressed by the following relation: 

 

 

Where the term  is the constant of the prime twins. If we substitute the term 2M at even n, with M 

being prime, the term 

  
fails since n=2M is not divisible by any prime ≥ 3 and Vinogradov's formula with c=2 becomes the 

same as our (4.2.10) proved for any M ≥ 127 
 

https://it.frwiki.wiki/wiki/Impair
https://it.frwiki.wiki/wiki/Nombre_premier
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𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   𝑝𝑚𝑎𝑥 #] is relative to any N0  other than Nopm, and (4.2.3)  relative to the first highest 

Nopm < No results: 

 

(4.2.16)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0 #] = 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0𝑝𝑚 #] * ∏
(𝑝𝑗−1)

(𝑝𝑗−2)3≤𝑝𝑗≤𝑝𝑚𝑎𝑥
 

 

where both densities refer to the same interval ]0, pmax #] with p # = max  √2𝑁0 # = √2𝑁0𝑝𝑚 # but are 

of integers of the interval incongruous and incompcongruous with two different numbers: N0 and 

N0pm 

 

According to (4.2.7), (4.2.16) becomes: 
 

(4.2.17)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0 #] = 2*C2 *( 𝐷𝑛𝑐]0,   √2𝑁0𝑝𝑚 # ]) * 2 ∏
(𝑝𝑗−1)

(𝑝𝑗−2)3≤𝑝𝑗≤𝑝𝑚𝑎𝑥
 =  

= 2*C2 *( 𝐷𝑛𝑐]0,   √2𝑁0 # ]) * 2 ∏
(𝑝𝑗−1)

(𝑝𝑗−2)3≤𝑝𝑗≤𝑝𝑚𝑎𝑥
   

 

being by hypothesis (𝑝max  <√2𝑁0< 𝑝max 𝑠𝑢𝑐𝑐  where 𝑝max  is the highest prime less than 

√2𝑁0𝑝𝑚) 𝐷𝑛𝑐]0,   √2𝑁0𝑝𝑚 # ] =  𝐷𝑛𝑐]0,   √2𝑁0 # ]. 

 Finally, since the term ∏
(𝑝𝑗−1)

(𝑝𝑗−2)3≤𝑝𝑗≤𝑝𝑚𝑎𝑥
 > 1, (4.2.17) in turn becomes: 

 

(4.2.18)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,   √2𝑁0 #]  > 2*C2 *( 𝐷𝑛𝑐]0,   √2𝑁0 # ])
2 

 

The inequality relation (4.2.18), similarly to the equality relation (4.2.7), following the same 

reasoning as in Appendix B, has a negligible relative approximation when referred to the interval ]0, 

N ].0 

This allows us to apply (4.2.18) to the interval ]0, N ]0  in addition to the interval ]0, √2𝑁0𝑝𝑚#] allowing 

us to write:: 
 

(4.2.19) 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0 ] 2 * 2*C  >(𝐷𝑛𝑐]0, 𝑁0 ])
2  

 

However, on the basis of observation (4.2.9) we can assume that ∀ N0 ∈ N greater than 121, (4.2.19) 

remains valid for all primes smaller than N0 and so we can substitute the density D(Ꞡ)(N0) of all 

numbers Ꞡ smaller than N0  in place of 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0 ] e 𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0 ] al posto di 𝐷𝑛𝑐]0, 𝑁0 ], by 

writing: 

 

(4.2.20) D(Ꞡ)(N0) > 2*C2 *(𝐷𝑝𝑟𝑖𝑚𝑖]0, 𝑁0 ]) 2 

 

If we now apply the NPT and multiply both members of (4.2.20) by N0  we obtain the number MꞠ(𝑁0) 

of the numbers Ꞡ smaller than N0 : 
 

(4.2.21) MꞠ(𝑁0) = D(Ꞡ)(N0) *N 0 >  𝑁0*2*C2 *(
1

𝑙𝑜𝑔𝑁0
) 2 

 

where N *0(
1

𝑙𝑜𝑔𝑁0
)2 always takes a value greater than or equal to 1 for N0 ≥ 2. Consequently, since 

2*C2 is also always greater than 1, MꞠ(𝑁0)  will always be greater than or equal to 1.  

 

It therefore follows from (4.2.21) that even for all numbers N 0 N0pm  the numbers Ꞡ are always 

greater than or equal to 1 and thus there will always be at least one pair of primes (N0  - Ꞡ and N0  + 

Ꞡ ) whose sum is equal to 2*N0 as predicted by Goldbach's conjecture. 

For N0  less than 121, Goldbach's conjecture is easily verifiable. 
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APPENDIX A 

 
 

Table showing the bi-univocal correspondence between the numbers 1 to 210 and all combinations of the congruence classes modulo 2 - 3 

- 5- 7 

no. of modules no. of modules no. of modules 

     2 - 3 - 5 - 7             2 - 3 - 5 - 7             2 - 3 - 5 - 7 

1) 1 - 1 - 1 - 1  

2) 0 - 2 - 2 - 2  
3) 1 - 0 - 3 - 3 4 

) 0 - 1 - 4 - 4  
5) 1 - 2 - 0 - 5  

6) 0 - 0 - 1 - 6  

7) 1 - 1 - 2 - 0  
8) 0 - 2 - 3 - 1  

9) 1 - 0 - 4 - 2  

10) 0 - 1 - 0 - 3  
11) 1 - 2 - 1 - 4  

12) 0 - 0 - 2 - 5  

13) 1 - 1 - 3 - 6  
14) 0 - 2 - 4 - 0  

15) 1 - 0 - 0 - 1  

16) 0 - 1 - 1 - 2  
17) 1 - 2 - 2 - 3  

18) 0 - 0 - 3 - 4  

19) 1 - 1 - 4 - 5  
20) 0 - 2 - 0 - 6  

21) 1 - 0 - 1 - 0  

22) 0 - 1 - 2 - 1  
23) 1 - 2 - 3 - 2  

24) 0 - 0 - 4 - 3  

25) 1 - 1 - 0 - 4  
26) 0 - 2 - 1 - 5  

27) 1 - 0 - 2 - 6  

28) 0 - 1 - 3 - 0  
29) 1 - 2 - 4 - 1  

30) 0 - 0 - 0 - 2  

31) 1 - 1 - 1 - 3  
32) 0 - 2 - 2 - 4  

33) 1 - 0 - 3 - 5  

34) 0 - 1 - 4 - 6  
35) 1 - 2 - 0 - 0  

36) 0 - 0 - 1 - 1  

37) 1 - 1 - 2 - 2  
38) 0 - 2 - 3 - 3  

39) 1 - 0 - 4 - 4  

40) 0 - 1 - 0 - 5  
41) 1 - 2 - 1 - 6  

42) 0 - 0 - 2 - 0  

43) 1 - 1 - 3 - 1  
44) 0 - 2 - 4 - 2  

45) 1 - 0 - 0 - 3  

46) 0 - 1 - 1 - 4  
47) 1 - 2 - 2 - 5  

48) 0 - 0 - 3 - 6  

49) 1 - 1 - 4 - 0  
50) 0 - 2 - 0 - 1  

51) 1 - 0 - 1 - 2  

52) 0 - 1 - 2 - 3  
53) 1 - 2 - 3 - 4  

54) 0 - 0 - 4 - 5  

55) 1 - 1 - 0 - 6  
56) 0 - 2 - 1 - 0  

57) 1 - 0 - 2 - 1  
58) 0 - 1 - 3 - 2  

59) 1 - 2 - 4 - 3  

60) 0 - 0 - 0 - 4  
61) 1 - 1 - 1 - 5  

62) 0 - 2 - 2 - 6  

63) 1 - 0 - 3 - 0  
64) 0 - 1 - 4 - 1  

65) 1 - 2 - 0 - 2  

66) 0 - 0 - 1 - 3  
67) 1 - 1 - 2 - 4  

68) 0 - 2 - 3 - 5  

69) 1 - 0 - 4 - 6  
70) 0 - 1 - 0 - 0  

71)       1 - 2 - 1 - 1  

72)       0 - 0 - 2 - 2  
73)       1 - 1 - 3 - 3  

74)       0 - 2 - 4 - 4  
75)       1 - 0 - 0 - 5  

76)       0 - 1 - 1 - 6  

77)       1 - 2 - 2 - 0  
78)       0 - 0 - 3 - 1  

79)       1 - 1 - 4 - 2  

80) 0 - 2 - 0 - 3  
81) 1 - 0 - 1 - 4  

82) 0 - 1 - 2 - 5  

83) 1 - 2 - 3 - 6  
84) 0 - 0 - 4 - 0  

85) 1 - 1 - 0 - 1  

86) 0 - 2 - 1 - 2  
87) 1 - 0 - 2 - 3  

88) 0 - 1 - 3 - 4  

89) 1 - 2 - 4 - 5  
90) 0 - 0 - 0 - 6  

91) 1 - 1 - 1 - 0  

92) 0 - 2 - 2 - 1  
93) 1 - 0 - 3 - 2  

94) 0 - 1 - 4 - 3  

95) 1 - 2 - 0 - 4  
96) 0 - 0 - 1 - 5  

97) 1 - 1 - 2 - 6  

98) 0 - 2 - 3 - 0  
99) 1 - 0 - 4 - 1  

100) 0 - 1 - 0 - 2  

101) 1 - 2 - 1 - 3  
102) 0 - 0 - 2 - 4  

103) 1 - 1 - 3 - 5  

104) 0 - 2 - 4 - 6 
105)  1 - 0 - 0 - 0  

106)  0 - 1 - 1 - 1  

107)  1 - 2 - 2 - 2  
108)  0 - 0 - 3 - 3  

109)  1 - 1 - 4 - 4  

110)  0 - 2 - 0 - 5  
111)  1 - 0 - 1 - 6  

112)  0 - 1 - 2 - 0  

113)  1 - 2 - 3 - 1  
114) 0 - 0 - 4 - 2  

115) 1 - 1 - 0 - 3  

116) 0 - 2 - 1 - 4  
117) 1 - 0 - 2 - 5  

118) 0 - 1 - 3 - 6  

119) 1 - 2 - 4 - 0  
120) 0 - 0 - 0 - 1  

121) 1 - 1 - 1 - 2  

122) 0 - 2 - 2 - 3  
123) 1 - 0 - 3 - 4  

124) 0 - 1 - 4 - 5  

125) 1 - 2 - 0 - 6  
126) 0 - 0 - 1 - 0  

127) 1 - 1 - 2 - 1  
128) 0 - 2 - 3 - 2  

129) 1 - 0 - 4 - 3  

130) 0 - 1 - 0 - 4  
131) 1 - 2 - 1 - 5  

132) 0 - 0 - 2 - 6  

133) 1 - 1 - 3 - 0  
134) 0 - 2 - 4 - 1  

135) 1 - 0 - 0 - 2  

136) 0 - 1 - 1 - 3  
137) 1 - 2 - 2 - 4  

138) 0 - 0 - 3 - 5  

139) 1 - 1 - 4 - 6  
140) 0 - 2 - 0 - 0 

 

141) 1 - 0 - 1 - 1  

142) 0 - 1 - 2 - 2  
143) 1 - 2 - 3 - 3  

144) 0 - 0 - 4 - 4  
145) 1 - 1 - 0 - 5  

146) 0 - 2 - 1 - 6  

147) 1 - 0 - 2 - 0  
148) 0 - 1 - 3 - 1  

149) 1 - 2 - 4 - 2  

150)     0 - 0 - 0 - 3  
151)     1 - 1 - 1 - 4  

152)     0 - 2 - 2 - 5  

153)     1 - 0 - 3 - 6  
154)     0 - 1 - 4 - 0  

155)     1 - 2 - 0 - 1  

156)     0 - 0 - 1 - 2  
157)     1 - 1 - 2 - 3  

158)     0 - 2 - 3 - 4  

159) 1 - 0 - 4 - 5  
160) 0 - 1 - 0 - 6  

161) 1 - 2 - 1 - 0  

162) 0 - 0 - 2 - 1  
163) 1 - 1 - 3 - 2  

164) 0 - 2 - 4 - 3  

165) 1 - 0 - 0 - 4  
166) 0 - 1 - 1 - 5  

167) 1 - 2 - 2 - 6  

168) 0 - 0 - 3 - 0  
169) 1 - 1 - 4 - 1  

170) 0 - 2 - 0 - 2  

171) 1 - 0 - 1 - 3  
172) 0 - 1 - 2 - 4  

173) 1 - 2 - 3 - 5  

174) 0 - 0 - 4 - 6  
175) 1 - 1 - 0 - 0  

176) 0 - 2 - 1 - 1  

177) 1 - 0 - 2 - 2  
178) 0 - 1 - 3 - 3  

179) 1 - 2 - 4 - 4  

180) 0 - 0 - 0 - 5  
181) 1 - 1 - 1 - 6  

182) 0 - 2 - 2 - 0  

183) 1 - 0 - 3 - 1  
184) 0 - 1 - 4 - 2  

185) 1 - 2 - 0 - 3  

186) 0 - 0 - 1 - 4  
187) 1 - 1 - 2 - 5  

188) 0 - 2 - 3 - 6  

189) 1 - 0 - 4 - 0  
190) 0 - 1 - 0 - 1  

191) 1 - 2 - 1 - 2  

192) 0 - 0 - 2 - 3  
193) 1 - 1 - 3 - 4  

194) 0 - 2 - 4 - 5  

195) 1 - 0 - 0 - 6  
196) 0 - 1 - 1 - 0  

197) 1 - 2 - 2 - 1  
198) 0 - 0 - 3 - 2  

199) 1 - 1 - 4 - 3  

200) 0 - 2 - 0 - 4  
201) 1 - 0 - 1 - 5  

202) 0 - 1 - 2 - 6  

203) 1 - 2 - 3 - 0  
204) 0 - 0 - 4 - 1  

205) 1 - 1 - 0 - 2  

206) 0 - 2 - 1 - 3  
207) 1 - 0 - 2 - 4  

208) 0 - 1 - 3 - 5  

209) 1 - 2 - 4 - 6  
210) 0 - 0 - 0 - 0 
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APPENDIX B 

 

 

Preamble If we wish to apply (4.2.7) to the interval ]0, N0pm ] as well as to the interval ]0, pmax #], 

with pmax equal to the first higher less than or equal to the √2𝑁0𝑝𝑚, we must take into account that 

while in the interval ]0, pmax #] both 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #]  and 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #]  are equal to the product 

of the factors (p - x)/p [where x is equal to 1 for 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #]  and 2 for 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #]  ] and 

where p varies respectively between 2 and pmax   and between 3 and pmax , on the other hand in the 

interval ]0, N0pm ], the two densities 𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]  e 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0𝑝𝑚 ]  are no longer equal to the 

product of the factors (p - x)/p since N0pm  unlike p max # is not a multiple of any prime in the interval 

[2, pmax ]. It can be shown, however, that the ratio of the density 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0𝑝𝑚 ] and the square of 

the density 𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ] relative to the interval ]0, N0pm ] is almost equal to that of (4.2.7) with a 

relative approximation of 0.1812 for N0pm =127 and rapidly decreasing for higher values (0.0404 for 

N0pm =1277). 

 
To this end, we compute the individual densities for a single p_1 modulus Ꜫ {2, 3, 5......., pmax } of 

the integers in the interval ]0, N0pm ] not congruent to N0pm modulus p_1 (for x=1) and not congruent 

to N0pm modulus p_1 (for x=2). Since these densities in the interval ]0, N0pm ] are different from (p_1 

- x) / p_1, in order to calculate them, for each p_1 we divide the interval ]0, N0pm ] into two intervals 

]0, Xp_1 ] and ]Xp_1 , N0pm ] where Xp_1 is the maximum multiple of p_1 contained in the interval ]0, 

N0pm ]. We then compute the total densities of these numbers (p_1 - x), non-congruent to N0pm modulo 

p_1 (for x=1) and non-congruent to N0pm modulo p_1 (for x=2), present in the two intervals: 

 

a) D(p_1) = 
𝑋𝑝_1∗

(𝑝_1−𝑥)

𝑝_1
+([𝑁0𝑝𝑚]

𝑝_1
−𝑓(ℎ,𝑥))

𝑁0𝑝𝑚
 = 

𝐿∗(𝑝1−𝑥)+([𝑁0𝑝𝑚]
𝑝1

−𝑓(ℎ,𝑥))

𝑁0𝑝𝑚
 

 
where L is equal to the ratio of the maximum multiple Xp_1 of p_1 contained in the interval ]0, N0pm 

] to p_1, where [N ]0pmp_1  < p_1 is equal to the width of the interval ] Xp_1 , N0pm ], where h is the 

number of integers in the interval ] Xp_1 , N0pm ] whose moduli p_1, in the case of x=1, is equal to the 

remainder of the division of N0pm by p_1 and, in the case of x=2, are equal to the remainder or its 

complement of the division of N0pm by p_1, and where finally f(h,x) is a function of h and x that takes 

the values of 1 or 2 depending on the values of h and x. Since N0pm is obviously a congruent number 

with itself h will be equal to 1 or 2. 

 

Knowing that [N0pm ]p_1 can take on a value between 1 and p_1 - 1 (the value 0 being excluded since 

both N0pm and p_1 are primes) and that f(h,x), depending on the value of h and x, can be worth 1 or 

2, we can state that the term ([N ]0pmp_1  - f(h,x)), always choosing for the purpose of our 

demonstration the highest of the possible values, takes on a value according to the following scheme: 

 

if h=1 for both x=1 and x=2 we have: ([N ]0pmp_1  - f(h,x)) = [N ]pmp_1 - 1 

if h=2 and therefore x=2 we have: ([N ]0pmp_1  - f(h,x)) = [N ]0pmp_1 - 2 

 
We can therefore write: 

 

b) L = 
(𝑁0𝑝𝑚−[𝑁0𝑝𝑚]𝑝_1)

𝑝_1
 

 
and (a): 
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c) D(p_1) = {
(𝑁0𝑝𝑚−[𝑁0𝑝𝑚]

𝑝_1
)

𝑝_1
∗ (𝑝_1 − 𝑥) + ([𝑁0𝑝𝑚]

𝑝_1
 –  f(h, x))} ∗  

1

𝑁0𝑝𝑚

 

 

and then multiplying and dividing the term ([N ]0pmp_1  - f(h,x)) by p_1: 

 

d) D(p_1) = 
𝑁0𝑝𝑚∗(𝑝_1−𝑥)− [𝑁0𝑝𝑚]

𝑝_1
∗𝑝_1+  [𝑁0𝑝𝑚]𝑝_1∗𝑥+ ([𝑁0𝑝𝑚]𝑝_1−𝑓(ℎ,𝑥))∗𝑝_1

𝑁0𝑝𝑚∗𝑝_1
 

 

e) D(p_1) = 
𝑁0𝑝𝑚∗(𝑝_1−𝑥)− [𝑁0𝑝𝑚]

𝑝_1
∗𝑝_1+  [𝑁0𝑝𝑚]𝑝_1∗𝑥+ [𝑁0𝑝𝑚]

𝑝_1
∗𝑝_1−𝑓(ℎ,𝑥)∗𝑝_1

𝑁0𝑝𝑚∗𝑝_1
 

 

f) D(p_1) = 
𝑁0𝑝𝑚∗(𝑝_1−𝑥) +  [𝑁0𝑝𝑚]𝑝_1∗𝑥 −𝑓(ℎ,𝑥)∗𝑝_1

𝑁0𝑝𝑚∗𝑝_1
 

 

g) D(p_1) = 1 − 
𝑁0𝑝𝑚∗𝑥

𝑁0𝑝𝑚∗𝑝_1
 - 

𝑓(ℎ,𝑥)∗𝑝1− [𝑁0𝑝𝑚]𝑝_1∗𝑥 

𝑁0𝑝𝑚∗𝑝_1
 

 
Let us now see, based on the possible values of h (1, 2) and x (1, 2) what expression g) takes on. 

 

For h=1 and x=1, 2 and thus f(h,x)=1 we have that: 

 

h) D(p_1) = 1 − 
𝑥

𝑝_1
 - 

 𝑝1−[𝑁0𝑝𝑚]𝑝_1∗𝑥 

𝑁0𝑝𝑚∗𝑝_1
 

 

For h=2 and x=2 and thus f(h,x)=2 we have that: 

 

i) D(p_1) = 1 − 
𝑥

𝑝_1
 - 

 2𝑝_1−[𝑁0𝑝𝑚]𝑝_1∗𝑥 

𝑁0𝑝𝑚∗𝑝_1
 

 
Definition We define DhN0pm  the product of the respective individual densities denoted by h) (with 

x=1) for each of the p_1 less than or equal to pmax and by DiN0pm the product of the respective 

individual densities denoted by i) (with x=2) for each of the p_1 less than or equal to pmax   (with pmax 

equal to the first highest less than or equal to the √2𝑁0𝑝𝑚). 

 

Lemma (a) The relative approximation 𝑎𝑟𝑡 between the ratio 𝐷𝑖𝑁0𝑝𝑚/𝐷ℎ𝑁0𝑝𝑚
2 and that 

( 𝐷𝑛𝑛𝑐𝑜𝑚𝑝𝑐]0,√2𝑁0𝑝𝑚 #])/( 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #])
2

 is equal to: 

  

𝑡) 𝑎𝑟𝑡 =  
4∗√2

√Nopm ∗𝑙𝑛√2Nopm
  

 

We begin by calculating the approximation of the 𝐷hN0pm with respect to the 𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #] and of 

𝐷𝑖𝑁0𝑝𝑚 with respect to the 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #]. In the expressions (h) and (i) the first two terms 

of the second member represent the individual densities (p_1 -1)/p_1 that the n € ]0, pmax #] are 

either non-congruent with N0pm modulo p_1 (with x=1) or non-congruent with N0pm  modulo p_1 

(with x=2) in the interval ]0, pmax #] . The last term of the second member then represents the 

approximation that the single density D(p_1) has to the single density (p_1 -1)/p_1 in the interval ]0, 

N0pm ]. For the purposes of our demonstration, we must consider in expressions h) and i) among 
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the various possible values of [𝑁0𝑝𝑚]𝑝_1 the one with the largest approximation in order to verify 

that it does not compromise the final result of the demonstration. Let us then refer to a single 

expression of D(p_1) and calculate its relative approximation: 

 

j)  D(p_1) = 
𝑝_1−𝑥

𝑝_1
 - 

𝑥∗𝑝1− [𝑁0𝑝𝑚]𝑝_1∗𝑥

𝑁0𝑝𝑚∗𝑝_1
 

 

with relative approximation 𝑎𝑟 = 
𝑥∗𝑝_1− [𝑁0𝑝𝑚]𝑝_1∗𝑥

𝑁0𝑝𝑚∗𝑝_1
* 

𝑝_1

𝑝_1−𝑥
 

 
(j) for x=1 becomes: 

 

k) D1  (p_1) = 1 − 
1

𝑝_1
 - 

 𝑝_1−[𝑁0𝑝𝑚]𝑝_1

𝑁0𝑝𝑚∗𝑝_1
 

 

which, assuming [𝑁0𝑝𝑚]
𝑝_1

= 1 again to choose the maximum approximation, becomes: 

 

l) D1 (p_1) = 1 − 
1

𝑝_1
 - 

1

𝑁0𝑝𝑚

∗
 𝑝𝑝_1−1 

 𝑝_1
 = 

𝑝_1−1

𝑝_1
 - 

1

𝑁0𝑝𝑚

∗
𝑝𝑝_1−1  

 𝑝_1
 

 

with relative approximation  𝑎𝑟 = 
1

𝑁0𝑝𝑚

∗
 𝑝𝑝_1−1 

 𝑝_1
*

𝑝_1

𝑝_1−1
 = 

1

𝑁0𝑝𝑚

 

 
and instead for x=2 it becomes: 

 

m) D2 (p_1) = 
𝑝_1−2

𝑝_1
 - 

2

𝑁0𝑝𝑚

∗
 𝑝_1−2 

 𝑝_1
 

 

with relative approximation 𝑎𝑟 = 
2

𝑁0𝑝𝑚

∗
 𝑝_1−2 

 𝑝_1
*

𝑝_1

𝑝_1−2
 = 

2

𝑁0𝑝𝑚

 

 

We have already defined products 𝐷ℎ𝑁0𝑝𝑚 𝑒 𝐷𝑖𝑁0𝑝𝑚 as: 

 

n) 𝐷ℎ𝑁0𝑝𝑚 ∶=  ∏ 𝐷1(𝑝𝑖)
𝑝𝑚𝑎𝑥
𝑝𝑖=2      e 𝐷𝑖𝑁0𝑝𝑚 ∶=  

1

2
∗ ∏ 𝐷2(𝑝𝑖)

𝑝𝑚𝑎𝑥
𝑝𝑖=3  

 

from which it follows that the relationship between  𝐷𝑖𝑁0𝑝𝑚  and the square of  𝐷ℎ𝑁0𝑝𝑚  is equal 

to: 
 

o) 
𝐷𝑖𝑁0𝑝𝑚   

𝐷ℎ𝑁0𝑝𝑚
2 =  

1

2
∗∏ 𝐷2(𝑝𝑖)

𝑝𝑚𝑎𝑥
𝑝=3

(∏ 𝐷1(𝑝𝑖)
𝑝𝑚𝑎𝑥
𝑝=2 )

2 

 

As in the case of expressions h) and i), also in the case of expressions l) and m) the first terms of the 

second member represent the densities (p_1 -1)/ p_1 and (p_1 -2)/ p_1 that the generic number n € 

]0, pmax #] is either non-congruent with N0pm modulo p_1 (with x=1) or non-congruent with N0pm  

modulo p_1 (with x=2). The last terms of the second member of the expressions l) and m) then 

represent the approximations that the densities D1 (p_1) and D2 (p_1) in the interval ]0, N0pm ] have 

with respect to those (p_1 -1)/ p_1 and (p_1 -2)/ p_1 relative to the interval ]0, pmax #]). 
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Taking the expressions (2.2.2) and (4.2.3) from the text relating to the densities of the integers in the 

interval ]0, pmax #] respectively incongruous and incompcongruous with N0pm modules pi ≤ pmax : 

 

p)  𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 # ] = ∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2            and q)  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #] = 

1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  

 
we see that they are respectively the product of the first terms of D1 (p_1) and D2 (p_1) for as many 

p_1 (𝑝𝑖) less than or equal to pmax for x=1 and x=2 respectively. The relative approximation of the 

expressions n) to those p) and q), similarly to the error propagation, will be equal to the sum of the 

relative approximations of the individual terms (pi − x)/pi.   

 

This means that for the expressions n) and o) there is a relative approximation 𝑎𝑟  equal to  
𝑥

𝑁0𝑝𝑚

∗

∑ 𝑝𝑖
0

𝑝𝑖≤𝑝𝑚𝑎𝑥
 which, for the NPT and knowing that pmax   is the highest prime less than or equal to 

the √2𝑁0𝑝𝑚, becomes: 

 

𝑟) 𝑎𝑟  = 
𝑥

Nopm
∗

√2Nopm

𝑙𝑛√2Nopm
=  

𝑥∗√2

√Nopm∗𝑙𝑛√2Nopm
 

 
Relative approximation therefore that for N0pm  = 127 is equal to: 0.0453*x while for N0pm  = 1277 is 

equal to: 0.0101*x and continues to decrease for increasing values of N0pm . 

 

From the expressions (p) and (q), it was derived in the text that the ratio between the density of the 

integers present in the interval ]0, pmax #] incongruous and incompcongruous with N0pm modules pi ≤ 

pmax and the square of the density of the integers present in the interval ]0, pmax #] incongruous with 

N0pm modules pi ≤ pmax is equal to  

 

 𝑠) 

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝
]0,√2𝑁0𝑝𝑚 #]

 

𝐷𝑛𝑐
]0,√2𝑁0𝑝𝑚 #]

2 =  

1

2
∗∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3

(∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2 )

2 

 
while the expressions n) showed that the ratio o) in the interval ]0, N0pm ] with respect to the ratio s) 

presents a relative approximation equal to the sum of the relative approximations of the terms present 

at the numerator and denominator; the term at the denominator presents an approximation double that 

indicated in r) and relative, with x=1, to the term  ∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2  while the term at the numerator has 

an approximation indicated in r) and relative, with x=2, to the term  
1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3 . 

Thus, the relative approximation of the ratio o) to that s), when instead of considering the interval ]0, 

pmax   #] one considers that ]0, N0pm  ], is equal to:  

 

 𝑡) 𝑎𝑟𝑡  =  
2∗√2

√Nopm ∗𝑙𝑛√2Nopm
+ 2 ∗ 

√2

√Nopm ∗𝑙𝑛√2Nopm
=  

4∗√2

√Nopm ∗𝑙𝑛√2Nopm
 

 

so for N0pm  = 127 𝑎𝑟𝑡 = 0.1812, for N0  = 1277 𝑎𝑟𝑡 = 0.0404 and for N0  increasing 𝑎𝑟𝑡 continues to 

decrease. 

 

So for the purposes of the demonstration, it can be written that the ratio of (4.2.8) in the text, in the 

worst case (i.e. to the highest approximation) is: 
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𝑢) 
𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2 =   

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝
]0,√2𝑁0𝑝𝑚 #]

  

( 𝐷𝑛𝑐
]0,√2𝑁0𝑝𝑚 #]

)2
∗ (1 −  𝑎𝑟𝑡)   

 

𝑣) 
𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2 ≈  2 ∗ C2 ∗ (1 − 𝑎𝑟𝑡)    ≈  1,32 ∗ (1 −  𝑎𝑟𝑡

)  

 

and consequently for N0  = 127 ed 𝑎𝑟𝑡 = 0.1812 can be written: 

 

𝑤) 
𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2 ≈  2 ∗ C2 ∗  (1 −  𝑎𝑟𝑡)  ≈  1,32 ∗ 0,8188 ≈  1,0808 

 

and for N0  = 1277 ed 𝑎𝑟𝑡 = 0,0404: 

 

𝑥) 
𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2 ≈  2 ∗ C2 ∗ (1 −  𝑎𝑟𝑡) ≈  1,32 ∗ 0,9596 ≈  1,2666 

 

and for N0   increasing, the ratio tends to 1.32. 

 

Now in the interval ]0, N0pm ] analogous to the calculation of the 𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ], the product 𝐷ℎ𝑁0𝑝𝑚 of 

the respective individual densities denoted by h) (with x=1) for each p_1 less than or equal to pmax 

approximates (Appendix E) without equating the correct density 𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]  of the uncongruent 

integers with N0pm modulo p_1 for each p_1 Ꜫ {2, 3, 5......., pmax } (with pmax highest prime less than 

or equal to √2𝑁0𝑝𝑚 ). In the following lemmas we will prove that 𝑫𝒏𝒄]𝟎, 𝑵𝟎𝒑𝒎 ] e 𝑫𝒉𝑵𝟎𝒑𝒎 are 

almost asymptotically equivalent with a small relative error (equal to 2*e−γ) so that it is all 

internal to the approximation " ≈ " of (4.2.8). 

 

Similarly in the same interval ]0, N0pm ], N0pm being prime and therefore not a multiple of any number 

in the above interval, the product 𝐷𝑖𝑁0𝑝𝑚 of the respective individual densities indicated by (i) (with 

x=2) for each of the p_1 less than or equal to pmax approximates  (Appendix E) without equalling the 

density 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0𝑝𝑚 ]  of the uncongruent integers with N0pm modulo p_1 for each p_1 Ꜫ {2, 3, 

5......., pmax } (with pmax highest prime less than or equal to √2𝑁0𝑝𝑚 ). And in fact, in the following 

lemmas we shall prove that 𝐃𝐢𝐍𝟎𝐩𝐦 is almost asymptotically equivalent to D𝐧𝐜𝐧𝐜𝐨𝐦𝐩]𝟎, 𝐍𝟎𝐩𝐦 ]. 

 

Ultimately then we can write that: 

 

𝑦)  
𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0𝑝𝑚 ]  

𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]
2  ≈

𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2 ≈  2 ∗ C2 ∗ (1 −  𝑎𝑟𝑡)    ≈  1,32 ∗ (1 −  𝑎𝑟𝑡

)  

 

Observation (x) implies that the ratio 
𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2  tends to a constant, thus 𝐷𝑖𝑁0𝑝𝑚 e 𝐷ℎ𝑁0𝑝𝑚

2
 are 

almost asymptotically equivalent, which will also be demonstrated in a different way in lemma c). 

 

Lemma (b) The product 𝐷ℎ𝑁0𝑝𝑚 and the density 𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ] of integers in the interval ]0, Nopm] 

incongruous with Nopm are asymptotically nearly equivalent functions (with a relative error of 2*𝑒−𝛾 

). 

 

First of all, we can say that according to the NPT the density Dnc]0, N0pm ] of incongruous numbers 

with N0pm   modulo p_1 for each p_1 Ꜫ {2, 3, 5......., pmax } (with pmax highest prime less than or equal 

to the √2N0pm ) in the interval ]0, N0pm ] is given, see also (2.2.5) in the text, by the difference 
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between the primes contained in the interval ]0, N0pm ] and those contained in the interval ]0, 

√2N0pm] divided by N0pm  and  i.e. by: 

 

Dnc]0, N0pm ] =

(
N0pm

logN0pm 
  −  

√2N0pm

log√2N0pm

)

Nopm
  ≈  

1

logNopm
∗ (1 −  

2√2

√N0pm
) 

 

although, especially for low values of N0pm , this value is much less accurate than the product DhN0pm 

of the individual densities indicated by h).  

 

Now to prove the asymptotic quasi-equivalence between the product DhN0pm  and the density 

Dnc]0, N0pm ]  we calculate the limit for N0pm → ∞ of the ratio between the density DhN0pm and that 

Dnc]0, N0pm ]: 

 

lim
N0pm→∞

∏ (1−
1

p
 − 

p−[N0pm]
p

N0pm∗p
)

pmax
p=2

1

logNopm
 ∗ (1− 

2√2

√N0pm

)

 = 
lim

N0pm→∞
∏ (1−

1

p
 − 

p−[N0pm]
p

N0pm∗p
)

pmax
p=2

lim
N0pm→∞

1

logNopm
 ∗ (1− 

2√2

√N0pm

)

 = 
lim

N0pm→∞
∏ (1−

1

p
 − 

p−[N0pm]
p

N0pm∗p
)

pmax
p=2

lim
N0pm→∞

1

logNopm
 ∗ (1− 

2√2

√N0pm

)

 = 

 

= 
lim

N0pm→∞
∏ (1−

1

p
) − lim

N0pm→∞

p−[N0pm]
p

N0pm∗p

pmax
p=2

lim
N0pm→∞

1

logNopm
 ∗ lim

N0pm→∞
 (1− 

2√2

√N0pm

)

 = 
lim

N0pm→∞
∏ (1−

1

p
) − 0

pmax
p=2

lim
N0pm→∞

1

logNopm
 ∗1

 = 

lim
N0pm→∞

∏  
(p−1)

pp≤√2∗N0pm

lim
N0pm→∞

  
1

2∗log√2∗N0pm−log2
 
 = 

 

= lim
N0pm→∞

 

∏  
(p−1)

pp≤√2∗N0pm

  
1

2∗log√2∗N0pm

 
 = 2 ∗  lim

N0pm→∞

 log√2 ∗ N0pm ∗  ∏  
(p−1)

pp≤√2∗N0pm
 = 2*e−γ = 1,122 ≅ 1 

  

knowing that by Merten's third theorem the limit lim
N0pm→∞

 log√2 ∗ N0pm ∗  ∏  
(p−1)

pp≤√2∗N0pm
 is equal 

to e−γ with γ Euler-Mascheroni constant equal to 0.57721 .......... 

 

For the purposes of demonstration, this relationship, although weaker than asymptotic equivalence, 

allows us to pose DhN0pm   ≈   Dnc]0, N0pm ]. 

 

Lemma (c) The product 𝐷𝑖𝑁0𝑝𝑚 and the square of 𝐷ℎ𝑁0𝑝𝑚 are asymptotically almost equivalent 

functions (with a relative error of 2*C2 ). 

 

To prove the asymptotic quasi-equivalence between the product DiN0pm and the square of the density 

DhN0pm we calculate the limit for N0pm → ∞ of the ratio between the density DiN0pm and the square 

of the density DhN0pm: 

lim
N0pm→∞

1

2
∏ (1−

2

p
 − 

2∗(p−[N0pm]
p

)

N0pm∗p
)

pmax
p=3

∏ (1−
1

p
 − 

p−[N0pm]
p

N0pm∗p
)2pmax

p=2

 = 
lim

N0pm→∞
 
1

2
∏ (1−

2

p
 − 

2∗(p−[N0pm]
p

)

N0pm∗p
)

pmax
p=3

lim
N0pm→∞

∏ (1− 
1

p
 − 

p−[N0pm]
p

N0pm∗p
)∗(1− 

1

p
 − 

p−[N0pm]
p

N0pm∗p
)

pmax
p=2

 =  

lim
N0pm→∞

1

2
∏ (1−

2

p
)  − lim

N0pm→∞

1

2
∏ (

pmax
p=3

2∗(p−[N0pm]
p

)

N0pm∗p
)

pmax
p=3

lim
N0pm→∞

∏ (1− 
1

p
 − 

p−[N0pm]
p

N0pm∗p
) ∗ lim

N0pm→∞
∏ (1− 

1

p
 − 

p−[N0pm]
p

N0pm∗p
)

pmax
p=2

pmax
p=2

 =  
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lim
N0pm→∞

 
1

2
∏ (1−

2

p
 )

pmax
p=3

lim
N0pm→∞

∏ (1−
1

p
 )

2pmax
p=2

 = 
lim

N0pm→∞
 
1

2
∏ (

p−2

p
 )

pmax
p=3

lim
N0pm→∞

(∏
p−1

p
 )2pmax

p=2

= 
lim

N0pm→∞
 
1

2
∏ (

p−2

p
 )

pmax
p=3

lim
N0pm→∞

1

4
∏ (

p−1

p
 )2pmax

p=3  
 = lim

N0pm→∞

 
1

2
∏ (

p−2

p
 )

pmax
p=3 4 ∗ 

 

(
p

p−1
 )2=2* lim

N0pm→∞

∏ (
p(p−2)

(p−1)2
 )

pmax
p=3 ≈ 2 ∗ C2 ≈ 1,32 

 

For the purposes of demonstration, this relationship, although weaker than the asymptotic 

equivalence, allows us to pose from here on DiN0pm  ≈   DhN0pm
2. 

 

Lemma (d) We prove that 𝐃𝐢𝐍𝟎𝐩𝐦 e 𝐃𝐧𝐜𝐧𝐜𝐨𝐦𝐩]𝟎,   𝐍𝟎𝐩𝐦]  are asymptotically equivalent. 

 

Being: 

 

1) lim
N0pm→∞

DhN0pm

Dnc]0, N0pm ]
    ≈   2*e−γ            (Lemma b) 

 

2) lim
N0pm→∞

DiN0pm

(DhN0pm)
2 ≈ 2 ∗ C2                 (Lemma c) 

 

based on points 1) and 2) we can write that: 

 

3) lim
N0pm→∞

DiN0pm

(Dnc]0, N0pm ])
2 = lim

N0pm→∞

DiN0pm

(DhN0pm)
2 ∗

(DhN0pm)
2

(Dnc]0, N0pm ])
2  = lim

N0pm→∞

DiN0pm

(Dnc]0, N0pm ])
2 ≈   

     
≈ 2 ∗ C2 ∗ (2e−γ )2 ≈ 1,66 

 

and thanks to (1) and (u) we can write: 

 

4) 
𝐷𝑖𝑁0𝑝𝑚

Dnc]0, N0pm ]
2  ≈ 

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝
]0,√2𝑁0𝑝𝑚 #]

  

( 𝐷𝑛𝑐
]0,√2𝑁0𝑝𝑚 #]

)2
  

namely that the two ratios  
𝐷𝑖𝑁0𝑝𝑚

Dnc]0, N0pm ]
2   e 

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝
]0,√2𝑁0𝑝𝑚 #]

  

( 𝐷𝑛𝑐
]0,√2𝑁0𝑝𝑚 #]

)2
 are asymptotically almost equivalent. 

 

Ultimately then based on the fact that: 

 

• 𝐷𝑖𝑁0𝑝𝑚 approximates without equalling the density 𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0𝑝𝑚 ] (Lemma a) 

• DiN0pm e (Dnc]0, N0pm ])
2

 are asymptotically almost equivalent (formula 3) 

• the two reports  
𝐷𝑖𝑁0𝑝𝑚

Dnc]0, N0pm ]
2   e  

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝
]0,√2𝑁0𝑝𝑚 #]

  

( 𝐷𝑛𝑐
]0,√2𝑁0𝑝𝑚 #]

)2
 are asymptotically almost equivalent  

 

we could deduce that DiN0pm ≈ Dncncomp]0,   N0pm] but this remains an open point. 

 

Ultimately [see w) and x)] the ratio 
𝐷𝑖𝑁0𝑝𝑚

𝐷ℎ𝑁0𝑝𝑚
2

   ≈  
𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0, 𝑁0𝑝𝑚 ]  

𝐷𝑛𝑐]0, 𝑁0𝑝𝑚 ]  2
    is always greater than 1 and 

therefore (4.2.8) and (4.2.19) of the text are proved by substituting the value 2*C2   for that 2*C2 *(1-

𝑎𝑟𝑡). 
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APPENDIX C 

 

Wanting to give a numerical example, let us set the first M = 41 and for ease of exposition, let us 

indicate the interval ]0, M] = ]0, 41] in the manner shown below where they are tiled: 

 

- right the numbers n0 prisotto of M=41 

- on the left the numbers n0 of which 1 is incongruous (nc1) and incompcongruous (ncomp1)  

placed in the row respectively with the numbers in the range ]0, 41] having those characteristics 

 

 
n0 of which 1 is     

 
incompcongruous(ncomp1) 

 

n0 
prisotto 

 and incongruous (nc1)        M  of M(NC) 

       

 41   41 NC 0 

 40 ncomp1  40  1 

 39   39  2 

 38  nc1 38  3 

 37   37 NC 4 

 36 ncomp1  36  5 

 35   35  6 

 34   34  7 

 33   33  8 

 32  nc1 32  9 

 31   31 NC 10 

 30 ncomp1 nc1 30  11 

 29   29 NC 12 

 28 ncomp1  28  13 

 27   27  14 

 26   26  15 

 25   25  16 

 24  nc1 24  17 

 23   23 NC 18 

 22 ncomp1  22  19 

 21   21  20 

 20  nc1 20  21 

 19   19 NC 22 

 18 ncomp1 nc1 18  23 

 17   17 NC 24 

 16 ncomp1  16  25 

 15   15  26 

 14  nc1 14  27 

 13   13 NC 28 

 12 ncomp1 nc1 12  29 

 11   11 NC 30 

 10 ncomp1  10  31 

 9   9  32 

 8  nc1 8  33 

 7   7 NC 34 

 6 ncomp1 nc1 6  35 
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 5  first 5 first 36 

 4  
minors of 

4 
minors 
of 37 

 3   Rad(M) 3  Rad(M) 38 

 2    2   39 

 1   1  40 

 0   0  41 
 

In the table there are 10 n0 prisotto of M (NC), 10 n0  of which 1 is not congruous (nc1), 10 n0   of 

which 1 is not compcongruous (ncomp1) and 3 n0   of which 1 is not congruous and is not 

compcongruous (PG) for which n0  +1  and n0  -1 are  primes. 

It is easily verified from the table that the verified density (𝐷𝑛𝑐]0,𝑀]𝑣𝑒𝑟)2=10/41=0.2439; 

Dncncomp(PG)(ver) =3/41=0.0731; PG(ver)= 3. 

 

On the other hand, it follows from the NPT and (3.3.8) that: 

 

• the calculated density 𝐷𝑛𝑐]0,𝑀]𝑐𝑎𝑙𝑐 = (M/lnM - Rad(M)/lnRad(M))/M = [1 - (2/Rad(M)]*(1/lnM) = 

[1-(2/Rad(41)]*1/ln41=0.1851 (to the nearest 24.10 %) 

• Dncncomp(PG)(calc) =1.32*.(𝐷𝑛𝑐]0,𝑀]𝑐𝑎𝑙𝑐)2 = 0.0452 (to the nearest 38.16 %) 

• PG(calc) = 41* Dncncomp(PG)(calc) = 1 (to the nearest 66 %) 

 

But with M ≥ 53 (first prime greater than 49), the values of the above quantities change along with 

their approximations as shown in the example table: 

 

 
M 𝐃𝐧𝐜]𝟎,𝐌]𝐯𝐞𝐫 𝐃𝐧𝐜]𝟎,𝐌]𝐜𝐚𝐥𝐜 Appr.

% 

Dncncomp(PG) 

(ver) 

Dncncomp(PG) 

        (calc) 

Appr. 

% 

PG 

(ver) 

PG  

(calc) 

Appr. 

% 

53 0,226 0,182 19,32 0.0754 0,0440 41,63 4 2 50,0  

20047 0,111 0,995 10,65 0,0163 0,0130 20,09  328 262 20,0  

40009 0,103 0,093 10,11  0,0143 0,0115 19,56 573 460 19,72  
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APPENDIX D 

 

Wanting to give a numerical example, let us assume the first M = 41 and for ease of exposition, let 

us indicate the interval ]0, 2M] = ]0, 82] in the manner shown below where they are tiled: 

 

- Odd numbers between 0 and 82 as, apart from 2, there are only prime numbers among them 

- The numbers n0 prisotto (nc) and prisopra (ncomp) of the interval ]0, 41] placed in a row 

with the prime numbers of the interval ]0, 41] and with the prime numbers of the interval 

[41, 82], respectively. 

 

n0 

prisopra (ncom) 
and prisotto (nc)               M  

      

0 ncomp nc  41  
2 ncomp  39  43 
4  nc 37  45 
6 ncomp  35  47 
8   33  49 

10  nc 31  51 
12 ncomp nc 29  53 
14   27  55 
16   25  57 
18 ncomp nc 23  59 
20 ncomp  21  61 
22  nc 19  63 
24  nc 17  65 
26 ncomp  15  67 
28  nc 13  69 
30 ncomp nc 11  71 
32 ncomp  9  73 
34  first 7  75 

36  

minors 
of 5  77 

38 ncomp 
 
Rad(2M) 3  79 

   1  81 
 

In the table, there are 9 n0  prisotto (nc) of M, 10 n0   prisopra (ncomp) of M and 4 n0   prisotto and 

prisopra (MG ) of M for which 41+ n and0     41- n0   are  primes. 

It is easily verified from the table that the verified density 𝐷𝑛𝑐]0,𝑀]𝑣𝑒𝑟 = 9/41=0.2195; 

Dncncomp(MG )(ver) =4/41=0.0975; MG (ver) = 4. 

 

On the other hand, it follows from the NPT and (4.2.8) that: 

 

• The calculated density 𝐷𝑛𝑐]0,𝑀]𝑐𝑎𝑙𝑐= (M/lnM - Rad(2M)/lnRad(2M))/M = [1 - 

(2*Rad(2)/Rad(M)]*(1/lnM) = [1-(2*Rad(2)/Rad(41)]*1/ln41=0.1502 (to the nearest 31.57 

%) 

 

• Dncncomp(MG )(calc) =1.32*( 𝐷𝑛𝑐]0,𝑀]𝑐𝑎𝑙𝑐)2  = 0.0297 (to the nearest 69.53 %) 
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• MG (calc) = 41* Dncncomp(MG )(calc) = 1 (to the nearest 75 %) 

 

But with M ≥ 127 (first prime greater than 121), the values of the above quantities change along 

with their approximations as shown in the example table: 

 
M 𝐃𝐧𝐜]𝟎,𝐌]𝐯𝐞𝐫 𝐃𝐧𝐜]𝟎,𝐌]𝐜𝐚𝐥𝐜 Appr. 

% 

Dncncomp(M )G 

(ver) 

Dncncomp(M )G 

        (calc) 

Appr 

% 

MG 

(ver) 

MG  

(calc) 

Appr 

% 

127 0,196 0,1546 21,45  0,0629 0,0315 49,9  8 4 50,0  

20047 0,110 0,0989 10,70  0,0146 0,0129 11,6  293 259 11,6  

40009 0,103 0,0930 10,18  0,0127 0,0114 10,3 510 457 10,4  
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APPENDIX E 

 

We know that according to combinatorial calculus  (𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #])  e (𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #]) 

are respectively equal to: 

 

∏
(𝑝−1)

𝑝

𝑝𝑚𝑎𝑥
𝑝=2            e 

1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  

 

with pmax the first higher less than √2𝑁0𝑝𝑚 

 

By developing the  𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #] (but would be entirely analogous by developing the 

𝐷𝑛𝑐]0,√2𝑁0𝑝𝑚 #]) and multiplying and dividing all the terms of the product by 𝑝𝑚𝑎𝑥#we obtain: 

 

𝐷𝑛𝑐𝑛𝑐𝑜𝑚𝑝]0,√2𝑁0𝑝𝑚 #] =  
1

2
∗ ∏

(𝑝−2)

𝑝

𝑝𝑚𝑎𝑥
𝑝=3  = 

1

2
∗

1

3
∗

3

5
∗

5

7
∗ … … . .∗

𝑝𝑚𝑎𝑥−2

𝑝𝑚𝑎𝑥
 =  

 
𝑝𝑚𝑎𝑥# 2⁄

𝑝𝑚𝑎𝑥#
*

𝑝𝑚𝑎𝑥# 3⁄

𝑝𝑚𝑎𝑥#
*

3∗𝑝𝑚𝑎𝑥# 5⁄

𝑝𝑚𝑎𝑥#
*

5∗𝑝𝑚𝑎𝑥# 7⁄

𝑝𝑚𝑎𝑥#
*… … … . .∗

(𝑝𝑚𝑎𝑥−2)∗𝑝𝑚𝑎𝑥# 𝑝𝑚𝑎𝑥⁄

𝑝𝑚𝑎𝑥#
 

 

where the individual terms of the final product represent the individual densities in the range ]0, 

𝑝𝑚𝑎𝑥#] of the incongruous and incompcongruous numbers with 𝑁0𝑝𝑚 mod. p_1. Similarly, if we 

refer to the density Dncncomp]0,N0pm]
 it will be roughly given by the product of the individual 

densities D2 (p_1). This small approximation is due to the fact that both the single density (p-2)/p of 

the incongruous and incompcongruous with Nopm modulus p and the total density of the incongruous 

and incompcongruous with Nopm ∏(p-2)/p are correct for combinatorial calculations as long as the 

amplitude of the interval to which they refer is respectively a multiple of the single p or of all p ≤ 

pmax. In our interval ]0, Nopm], on the other hand, the amplitude is not a multiple of any p ≤ pmax 

and this results in both the small difference between Dncncomp]0, Nopm] and Dncncomp]0, pmax 

#] and the difference between Dinopm and the density Dncncomp]0, Nopm].  

For the sake of clarity, let us give a tabular example based on the development of the various possible 

combinations of the incongruous numbers with 𝑁0𝑝𝑚 modulo p_1 for all p_1 ≤ 𝑝𝑚𝑎𝑥. In the example 

we refer for simplicity to the calculation of Dnc]0, Nopm] (for that of Dncncomp]0, Nopm] the 

reasoning is entirely analogous) and choose a small value of 𝑁0𝑝𝑚. The example is shown in figure 

A. 

 

 

 



32 

 

Figures A-1, A-2 and A-3 show with coloured backgrounds the n incongruous with Nopm for 

modules 2, 3 and 5 respectively in the intervals [1, 2], [1, 3] and [1, 5]. Wanting to calculate the 

incongruous numbers with Nopm for modules 2, 3 and 5, we first see in Fig. A-5 how the incongruous 

numbers with Nopm for module 2 combine with the incongruous numbers for module 3 in the interval 

[1, 2*3]. We observe how, due to the primality of 2 and 3, the incongruous 0 of modulus 2 combines 

in the interval [1, 6] with all values of modulus 3 and thus also with the incongruous 1 and 0 of 

modulus 3. In the interval [1, 6] the total incongruity combinations (for modulo 2 and modulo 3) are 

2 = (2-1)*(3-1) and the Dnc density of incongruous numbers with Nopm in the same interval is 2/6 = 

1/3 

 

Thus we see in Figure A-4 how the two incongruities mod. 2 and mod. 3 of the interval [1, 6] combine 

in the interval [1, 2*3*5], where 2*3*5=30 = pmax #, with all values of modulus 5 and thus also with 

the incongruities 0, 1, 2 and 4 of modulus 5. In the interval ]0, 30] the total incongruity combinations 

(for modulo 2, modulo 3 and modulo 5) are 8 = (2-1)*(3-1)*(5-1) and the density Dnc]0, pmax #] of 

incongruous numbers with Nopm in the same interval is 8/30 = 4/15 = 0.2666....   

             

          

Let us now consider, instead of the interval ]0, 30] = ]0, pmax #], the interval ]0, 23] = ]0, Nopm] 

and compare the density Dnc]0, Nopm] of incongruities with Nopm relative to the afore mentioned 

interval and obtainable from Fig. A-4 with that Dhnopm calculable as the product of the individual 

densities D(p_1) (see Appendix B (a)) relative to modules 2, 3, 5.     

         

From Figure A-4 we derive that the incongruous numbers with Nopm (23) in the interval ]0, 23] are 

6 and that therefore the density Dnc]0, Nopm] is 6/23 = 0.2608....     

         

To calculate Dhnopm instead, we calculate the individual densities D(p_1) of the incongruous 

numbers with Nopm for modules 2, 3 and 5 respectively:      

              

D(p_1) = (L*(p_1 - 1) + [Nopm]p_1 - h)/Nopm       

       

where L is equal to the ratio between the maximum multiple Xp_1 of p_1 contained in the interval 

]0, N0pm] and p_1; where [N0pm]p_1 is the  class of Nopm modulo p_1 and is equal to the 

amplitude of the interval ]Xp_1, Nopm]; where h is the number of congruent numbers present in the 

interval ]Xp_1, Nopm] and which in our case is equal to 1, Nopm being a number congruent with 

itself. We will therefore have:         

   

D(2) = (11*1+(1-1))/23 = 11/23; D(3) = (7*2+(2-1))/23 = 15/23; D(5) = (4*4+(3-1))/23 = 18/23

              

and thus: Dhnopm = D(2)*D(3)*D(5) = 11/23 * 15/23 * 18/23 = 0.2441   

          

From this comparison, we deduce that the relative approximation between Dnc]0, Nopm] and 

Dhnopm is approximately 6.4 %, and it can easily be verified that the above approximation holds for 

increasing values of Nopm well below 10 %.       

              

This approximation is due to the fact that both the single density (p-1)/p of the incongruities with 

Nopm modulo p and the total density of the incongruities with Nopm ∏(p-1)/p are correct for 

combinatorial calculations as long as the amplitude of the interval to which they refer is respectively 

a multiple of the single p or of all p ≤ pmax. In our interval ]0, Nopm], on the other hand, the amplitude 

is not a multiple of any p ≤ pmax and this results in both the small difference between Dnc]0, Nopm] 

and Dnc]0, pmax #] and that between Dhnopm and the density Dnc]0, Nopm] of the incongruous 

numbers with Nopm moduli 2, 3 and 5        

      

The same reasoning with similar conclusions can be made about the approximation between 

Dncncomp]0, Nopm] and Dinopm 
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