Investigation of Hardy-Littlewood and of Goldbach conjectures with the primality theorems of Congruence and of Complementary Congruence

Investigation of the Hardy-Littlewood and Goldbach conjectures with the Congruence Primality Theorems and Complementary Congruence

Abstract

This article provides novel insights on Hardy-Littlewood's conjecture (infinity and distribution of twin primes) and on Goldbach's conjecture; this work is primarily based on two primality theorems of congruence and of compcongruence. Study results in demonstration of Hardy-Littlewood and the Goldbach conjectures.The approach taken also opens up new areas of possible research in the field of Number Theory.

A study of the Hardy-Littlewood conjecture (infinity and distribution of first twins) and the Goldbach conjecture is developed in the article; it is based primarily on two primality theorems of congruence and compcongruence. The study arrives at the proof of the Hardy-Littlewood and Goldbach conjectures. In addition to the results achieved, the study opens up new areas of possible research in the field of Number Theory.

1 Congruence Primalities

1.1 The Congruence of Natural Numbers

As is well known, the congruence relation [1.2.1 of (a)] modulus m is an equivalence relation defined on the set of integers Z as follows: if m is a fixed integer greater than 1 , two integers a and b are said to be congruent modulus m if $\mathrm{m} \mid(\mathrm{a}-\mathrm{b}) ; \mathrm{m}$ is called the modulus of congruence and is denoted by $\mathrm{a} \equiv$ $\mathrm{b}(\bmod \mathrm{m})$.
In the field of natural numbers, it can also be equivalently stated that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if a and b give the same remainder in the integer division by m .
For example, $24 \equiv 10(\bmod 7)$ because they both give remainder 3 in the integer division by 7 . All numbers congruent with each other modulo m constitute an equivalence class, called the congruence class modulo m: two natural numbers belong to the same congruence class if and only if they are congruent modulo m , that is, if and only if they divide by m and give the same remainder r . If, as in the example, the modulus is 7 , seven classes are thus formed (as many as there are possible remainders in the division by 7) as follows [0], [1], [2], [3], [4], [5], [6]. Always limiting ourselves to the subset of Z consisting of the natural numbers, to establish to which class modulo m one of them belongs we divide it by m , the remainder indicating the class.
It should be emphasised that for each m it is always the case that $[\mathrm{m}]_{\bmod \mathrm{m}}=[0]_{\bmod \mathrm{m}}$.
Remark 1.1.2 From Number Theory we know that any natural number n will only be non-prime if it is divisible by one or more prime numbers less than or equal to the \sqrt{n}. Since all even natural numbers, except 2 , are non-prime because they are divisible by 2 , it can be asserted that any odd natural number $\mathrm{n}>4$ will only be non-prime if it is divisible by one or more prime numbers odd less than or equal to .\sqrt{n}.

From here on, the variables $\mathrm{p}, \mathrm{p} 1, \mathrm{p} 2, \ldots \mathrm{p}_{\mathrm{i}}$ always denote prime numbers and $\mathbb{P}(M)$ the set of odd prime numbers less than or equal to the number M.

1.2 Congruence Primality Theorem

Enunciation 1.2.1 $\forall N_{0}, n_{0} \in N$ with $N_{0} \geq 3,0 \leq n_{0} \leq N_{0}-3$ and even if N_{o} is odd or vice versa, with $\mathbb{P}\left(\sqrt{\left(N_{0}-n_{0}\right)}\right)$ set of odd prime numbers $\leq \sqrt{\left(N_{0}-n_{0}\right)}$, a necessary and sufficient condition for $N_{0}-n_{0}$ to be a prime number is that $n_{0} \not \equiv N_{0}\left(\bmod p_{i}\right) \forall p_{i} \in \mathbb{P}\left(\sqrt{\left(N_{0}-n_{0}\right)}\right)$ or that $\mathbb{P}\left(\sqrt{\left(N_{0}-n_{0}\right)}\right)$ is an empty set.

Proof. According to the congruence of natural numbers (1.1) if N_{0} and n_{0} do not belong to the same congruence class modulo p_{i} for all $p_{i} \in \mathbb{P}\left(\sqrt{\left(N_{0}-n_{0}\right)}\right)$, this means that $\mathrm{N}_{0}-\mathrm{n}_{0}$ (an always odd natural number) is not divisible by any odd prime number less than or equal to the $\sqrt{\left(N_{0}-n_{0}\right)}$ and that therefore, according to observation (1.1.2), $\mathrm{N}_{0}-\mathrm{n}_{0}$ is a prime number. If instead $\mathbb{P}\left(\sqrt{\left(N_{0}-n_{0}\right)}\right)$ results in an empty set (with $\mathrm{n}_{0}=\mathrm{N}_{0}-3, \mathrm{~N}_{0}-4, \mathrm{~N}_{0}-5, \mathrm{~N}_{0}-6, \mathrm{~N}_{0}-7, \mathrm{~N}_{0}-8$) the number $\mathrm{N}_{0}-\mathrm{n}_{0}$ cannot be divided by any prime and is therefore prime.
Conversely, if $\mathrm{N}_{0}-\mathrm{n}_{0}$ is a prime number, it will not be divisible by any other lower, equal or nonexistent odd prime number of the $\sqrt{\left(N_{0}-n_{0}\right)}$ and therefore N_{0} and n_{0} will always result non congrui $\forall p_{i} \in \mathbb{P}\left(\sqrt{\left(N_{0}-n_{0}\right)}\right)$.

We set $\mathrm{n}_{0} \leq \mathrm{N}_{0}-3$ because with $\mathrm{n}_{0}=\mathrm{N}_{0}-1$ one would have that $\mathrm{N}_{0}-\mathrm{n}_{0}=1$ which, as is known, is neither a prime nor a compound number, and with $\mathrm{n}_{0}=\mathrm{N}_{0}-2$ one would have that N_{0} and n_{0} would both be even or odd contrary to the hypothesis. In order then to prevent n_{0} from taking negative values, it must be $\mathrm{N}_{0} \geq 3$.

Remark 1.2.2 If, instead of referring to the set $\mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}-\boldsymbol{n}_{\mathbf{0}}\right)}\right)$ we want to refer, for the needs of successive demonstrations, to the set $\mathbb{P}\left(\sqrt{\mathbf{N}_{\mathbf{0}}}\right)$, the theorem (1.2.1) is transformed into the corollary (1.2.3)

Given a number $\mathrm{N}_{0} \in \mathrm{~N}$, a number $\mathrm{n}_{0} \in \mathrm{~N}$, smaller than N_{0} and such that ($\mathrm{N}-\mathrm{n}_{00}$) is odd is called the Prisotto of \mathbf{N}_{0} if it turns out that $\mathrm{n}_{0} \not \equiv \mathrm{~N}_{0}\left(\bmod \mathrm{p}_{\mathrm{i}}\right) \forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$.

Corollary 1.2.3 $\forall N_{0}, n_{0} \in N$ with $N_{0} \geq 9,0 \leq n_{0} \leq N_{o}-p_{\max }$ and even if N_{o} is odd or vice versa, with $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$ set of odd prime numbers $\leq \sqrt{\left(N_{0}\right)}$ and with $p_{\max }$ prime number higher than $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$, a necessary and sufficient condition for $N_{o}-n_{0}$ to be a prime number is that no is a number prisotto of N.

Proof. substituting $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$ a $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}-\mathrm{n}_{0}\right)}\right)$, in contrast to theorem (1.2.1), the numbers n_{0} smaller than N_{0} and belonging to the interval $\left[\mathrm{N}_{0}-\mathrm{p}_{\text {max }} ., \mathrm{N}_{0}-3\right]$ are not considered since they all have at least one congruence class mod p_{j}, with $p_{j} \in \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$, equal to that of the same modulus of N_{0} . In fact for the $\mathrm{n}_{0} \in\left[\mathrm{~N}_{0}-\mathrm{p}_{\max } ., \mathrm{N}_{0}-3\right], \mathrm{N}_{0}-\mathrm{n}_{0}$ will belong to the interval [3, $\left.\mathrm{p}_{\max }\right]$ and thus be equal to a prime or compound number belonging to this interval; in the first case according to modular arithmetic if $\mathrm{N}_{0}-\mathrm{n}_{0}=\mathrm{p}_{\mathrm{j}}$, with $\mathrm{p}_{\mathrm{j}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right) \subset\left[3, \mathrm{p}_{\text {max }}.\right]$ this implies that $\left[\mathrm{N}_{0}\right] \bmod \mathrm{p}_{\mathrm{j}}-\left[\mathrm{n}_{0}\right] \bmod$ $p_{j}=\left[p_{j}\right] \bmod p_{j}=[0]$ whence the congruence $\bmod p_{j}$ of n_{0} with N_{0}; if instead $N_{0}-n_{0}$ is equal to a compound number $\mathrm{m}^{*} \mathrm{p}_{\mathrm{j}}$, with $\mathrm{p}_{\mathrm{j}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right) \subset\left[3, \mathrm{p}_{\max }.\right]$, we will have that $\left[\mathrm{N}_{0}\right] \bmod \mathrm{p}_{\mathrm{j}}-\left[\mathrm{n}_{0}\right]$ $\bmod p_{j}=[m] \bmod p_{j} *\left[p_{j}\right] \bmod p_{j}=[m] \bmod p_{j} *[0]=[0]$ whence the congruence $\bmod p_{j}$ of n_{0} with N_{0}.
Conversely, if $\mathrm{N}_{0}-\mathrm{n}_{0}$ is a prime number, belonging to the interval] $\mathrm{p}_{\max }, \mathrm{N}_{0}$], it as prime will not be divisible by any other odd prime number less than or equal to $p_{\max }$ and thus the $\sqrt{\left(N_{0}\right)}$ and therefore N_{0} and n_{0} will always be non congrui $\forall p_{i} \in \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$.

He placed himself $N_{0} \geq 9$ in quanto per valori inferiori $p_{\max }$ would not be defined.

According to Corollary 1.2 .3 we can state that the numbers n_{0} prisotto of N_{0}, subtracted from N_{0}, result in all prime numbers in the interval] $\left.\mathrm{p}_{\text {max }}, \mathrm{N}_{0}\right]$.

Remark 1.2.4 Obviously, with N_{0}, being equal, the difference between the set of incongruous numbers less than N_{0} modulo $\mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}-\boldsymbol{n}_{\mathbf{0}}\right)}\right)$ and that of the numbers prisotto of N_{0} is given by all $n_{0}=N$ - poi with $p_{j} \in \mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}\right)$. In practice, the number of all odd primes less than or equal to N_{0} is equal to the sum of the number of prisotto numbers of N_{0} and that of $p_{j} \in \mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}\right)$.

Remark 1.2.5 Both theorem (1.2.1) and corollary (1.2.3) tell us nothing about the existence of at least one incongruous no . However, according to postulate [6.3 of (b)] of Bertrand (later proved by Pafnuty Chebyshev, Srinivasa Ramanujan and Paul Erdös), which states that for each $n \geq 2$ there exists at least one prime p such that $n<p<2 n$, we can state, with respect to the corollary (1.2.3), that in the interval] $p_{\max }, N_{0}$] there will always exist at least one prime being $2 p_{\max } \leq 2 \sqrt{N_{0}} \leq N_{0}$ for $N_{0} \geq 4$. Consequently, in the interval]0, $N_{0}-p_{\max }$ [there will always exist at least one n_{0} prisotto of N_{0}.

1.3 The Compcongruence of Natural Numbers

We now introduce Complementary Congruence (compcongruence) modulus m as the correspondence relation defined on the set of integers Z as follows: if m is a fixed integer greater than 1 , two integers a and b are said to be compcongruent modulus m if $m \mid(a+b) ; m$ is called the modulus of the compcongruence and we will denote it by a $\| \mathrm{b}(\bmod m)$.

In the field of natural numbers, one can also equivalently state that $\mathrm{a} \| \mathrm{b}(\bmod m)$ if a and b give two complementary remainders with respect to m in the integer division by m. For example, $24 \| 39(\mathrm{mod}$ 7) because they give as remainders in the integer division by 7 respectively 3 and 4, i.e. two complementary numbers with respect to 7 .

1.4 Compcongruence Primality Theorem

Enunciation 1.4.1 $\forall N_{o}, n_{0} \in N$ with $N_{0} \geq 2,0 \leq n_{0} \leq N_{o}-1$ and even if N_{o} is odd or vice versa, with $\mathbb{P}\left(\sqrt{\left(N_{0}+n_{0}\right)}\right)$ set of odd prime numbers $\leq \sqrt{\left(N_{0}+n_{0}\right)}$, a necessary and sufficient condition for $N_{0}+n_{0}$ to be a prime number is that no $\nVdash N_{0} \cdot\left(\bmod p_{i}\right) \forall p_{i} \in \mathbb{P}\left(\sqrt{\left(N_{0}+n_{0}\right)}\right)$ or that $\mathbb{P}\left(\sqrt{\left(N_{0}+n_{0}\right)}\right)$ is an empty set.

Proof. According to the compcongruence of natural numbers (1.3), if N_{0} and n_{0} are not compcongruent modulo p_{i} for all p_{i} belonging to the $\operatorname{set} \mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}+\boldsymbol{n}_{\mathbf{0}}\right)}\right)$, this means that $\mathrm{N}_{0}+\mathrm{n}_{0}$ is not divisible by any prime number less than the $\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}+\boldsymbol{n}_{\mathbf{0}}\right)}$ and that therefore, according to observation (1.1.2), $\mathrm{N}_{0}+\mathrm{n}_{0}$ is a prime number. If, on the other hand $\mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}+\boldsymbol{n}_{\mathbf{0}}\right)}\right)$ is an empty set, the number $\mathrm{N}_{0}+\mathrm{n}_{0}$ cannot be divided by any prime and is therefore prime.
Conversely, if $\mathrm{N}_{0}+\mathrm{n}_{0}$ is a prime number, it will not be divisible by any other lower, equal or nonexistent odd prime number of the $\sqrt{\left(N_{0}+n_{0}\right)}$ and therefore N_{0} and n_{0} will always be non compcongrui $\forall p_{i} \in \mathbb{P}\left(\sqrt{\left(N_{0}+n_{0}\right)}\right)$.

We set $\mathrm{N}_{0} \geq 2$ because with $\mathrm{N}_{0}=1$ and $\mathrm{n}_{0}=0$ we would have $\mathrm{N}+\mathrm{n}_{00}=1$, a non-prime and noncompound number.

Remark 1.4.2 If, instead of referring to the set $\mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}+\boldsymbol{n}_{\mathbf{0}}\right)}\right)$ we want to refer, for the needs of successive demonstrations, to the set $\mathbb{P}\left(\sqrt{\mathbf{2 N} \mathbf{N}_{\mathbf{0}}}\right)$ the theorem (1.4.1) is transformed into the corollary (1.4.3).

That is, given two numbers $\mathrm{N}_{0}, \mathrm{n}_{0} \in \mathrm{~N}$, with $\mathrm{n}_{0}<\mathrm{N}_{0}$ and such that ($\mathrm{N}_{0}+\mathrm{n}_{0}$) is odd, if it turns out that every odd prime number $\mathrm{p} \leq \sqrt{\left(2 N_{0}\right)}$ does not divide the number $\left(\mathrm{N}_{0}+\mathrm{n}_{0}\right)$ it means that it is prime.

Given a number $\mathrm{N}_{0} \in \mathrm{~N}$, a number $\mathrm{n}_{0} \in \mathrm{~N}$, less than or equal to N_{0} and such that ($\mathrm{N}+\mathrm{n}_{00}$) is odd is called the Prisopra of $\mathbf{N}_{\mathbf{0}}$, if it turns out that $n_{0} \nVdash \mathrm{~N}_{0}\left(\bmod \mathrm{p}_{\mathrm{i}}\right) \forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(2 \mathrm{~N}_{0}\right)}\right)$.

Corollary 1.4.3 $\forall N_{o}, n_{0} \in N$ with $N_{o} \geq 2,0 \leq n_{0} \leq N_{0}-1$ and even if N_{o} is odd or vice versa, with $\mathbb{P}\left(\sqrt{\left(2 N_{0}\right)}\right)$ set of odd prime numbers $\leq \sqrt{\left(2 N_{0}\right)}$, a necessary and sufficient condition for $N_{0}+$ no to be a prime number is that no is a prisopra of N_{0}.

Proof. Extending the set of prime numbers of theorem (1.4.1) from $\mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}+\boldsymbol{n}_{\mathbf{0}}\right)}\right)$ a $\mathbb{P}\left(\sqrt{\left(\mathbf{2} \boldsymbol{N}_{\mathbf{0}}\right)}\right)$ and indicating by $\mathbb{P}\left(\Delta 2 N_{0}\right)$ the set of primes in $\mathbb{P}\left(\sqrt{\left(2 N_{0}\right)}\right)$ e non in $\mathbb{P}\left(\sqrt{\left(N_{0}+n_{0}\right)}\right)$ nothing changes since for each of the numbers n_{0} (incompcongrui con N_{0} moduli $\mathbb{P}\left(\sqrt{\left(N_{0}+n_{0}\right)}\right)$
tali che $N_{0}+n_{0}=p_{j}$, with p_{j} belonging to the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$, it can never be the case that n_{0} is compcongruent with N_{0} modules $\mathbb{P}\left(\Delta 2 N_{0}\right)$, e cioè che $\left[N_{0}\right]_{\bmod p_{i}}+\left[n_{0}\right]_{\bmod p_{i}}=[0]_{\bmod p_{i}}$, for at least one $p_{i} \in \mathbb{P}\left(\Delta 2 N_{0}\right)$. In fact, bearing in mind that $\sqrt{2 N_{0}} \leq N_{0}$ con $N_{0} \geq 2$ and that therefore all the primes p_{i} belonging to the set $\mathbb{P}\left(\Delta 2 N_{0}\right)$ are $\leq \mathrm{N}_{0}$ we have that for each p_{j} belonging to the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$ results $\left[p_{j}\right]_{\text {mod } p_{i}} \neq[0]$ always being p_{i} e p_{j} two prime numbers and different from each other. Consequently for each of the numbers n_{0} tali che $N_{0}+n_{0}=p_{j}$, since modular arithmetic always results in $\left[\mathrm{N}_{0}\right] \bmod \mathrm{p}_{\mathrm{j}}+\left[\mathrm{n}_{0}\right] \bmod \mathrm{p}_{\mathrm{j}}=\left[p_{j}\right]_{\bmod p_{i}}$ and the latter is always different from zero, it can be stated that n_{0} is prisopra of N_{0}.
Conversely, if $\mathrm{N}_{0}+\mathrm{n}_{0}$ is a prime number, it will not be divisible by any other lower, equal or nonexistent odd prime number of the $\sqrt{\left(2 N_{0}\right)}$ and therefore N_{0} and n_{0} will always be non compcongrui $\forall p_{i} \in \mathbb{P}\left(\sqrt{\left(2 N_{0}\right)}\right)$.

Remark 1.4.4 Both the theorem (1.4.1) and the corollary (1.4.3) tell us nothing about the existence of at least one n_{0} prisopra of N_{0}. But on the basis of Bertrand's postulate [6.3 of (b)] we can state that in the interval [$N_{0}, 2 N_{0}$] there will always exist at least one prime and consequently in the interval J0, N_{0}] there will always exist at least one n_{0} prisopra of N_{0}.

1.5 Numbers and their congruence classes

Number Theory tells us that just as there exists in positional number systems (e.g. the decimal system) a bi-univocal correspondence between all possible numbers expressible with n digits (and therefore belonging to the interval $\left.] 0,10^{n}-1\right]$) and all possible combinations (10^{n}) of the 10 digits, similarly there exists a bi-univocal correspondence between all possible numbers of the interval $\left.] 0, p_{\text {max }} \#\right]$, with $\mathrm{p}_{\max }$ any prime and $\mathrm{p}_{\max } \#$ its prime, and the combinations of the congruence classes of these numbers having for modulus the single primes less than and equal to $\mathrm{p}_{\max }$. The existence of this biunivocal correspondence is easily proved by resorting to the Chinese Remainder Theorem [2.3.3 of (b)] and inserting as modules of the system of equations $p_{\max }$ and all primes less than it.

Remark 1.5.1 We will call the table number-classes $\boldsymbol{p}_{\max }$ the table which, for each number in the interval $\left.] 0, \mathrm{p}_{\max } \#\right]$ associates the combination of the congruence classes of this number having for modulus the single prime numbers less than and equal to $\mathrm{p}_{\text {max }}$.

For illustrative purposes, let us consider (see Appendix A) a number-class table 7 containing for each number the corresponding combination of its 4 congruence classes $\bmod 2, \bmod 3, \bmod 5$ and $\bmod 7$.
The above-mentioned bi-univocal correspondence can be verified in this table. E.g. the combination $1-2-2-3$ of the congruence classes $\bmod 2, \bmod 3, \bmod 5 \operatorname{and} \bmod 7$ corresponds only to the number 17 in the interval [1, 210], just as the number 151 corresponds only to the combination 1-1-1-4 of the same congruence classes in the interval $[1,210]$.

As we shall see later, the Number-Class Table pmax is introduced in this study in order to calculate the densities of the numbers prisotto and prisopra of N_{0}.

1.6 From the Number-Class Table pmax to Primalities

Is there a criterion for deducing from the number-class table $\mathrm{p}_{\max }$ and from the information contained therein how many, in addition to the modules $\left\{2,3, \ldots \ldots, . \mathrm{p}_{\max }\right\}$ on which the table is built, are the prime numbers less than or equal to any $\left.\left.\mathrm{N}_{0} \in\right] 0, p_{\max } \#\right]$ and those within the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$?

Remark 1.6.1 Among the various possible criteria, the one that interests us for our subsequent demonstrations consists in the application of the corollary (1.2.3) of the Primality of Congruence and that (1.4.3) of the Primality of Compongruence according to which the number of the odd primes less than or equal to N_{0} is, minus the primes less than the $\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}$ e cioè i modules $\left\{2,3, \ldots . .\right.$. . $\left.p_{\max }\right\}$ on which the table is constructed, is equal to that of the numbers in the table prisotto of No while the number of primes in the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$ is equal to that of the numbers prisopra of N_{0}.

From this observation, it follows that in order to derive from the number-class table $\mathrm{p}_{\text {max }}$ the prime numbers less than or equal to N_{0} using the Primality of Congruence criterion, a condition must be imposed that binds N_{0} to the number-class table $\mathrm{p}_{\max }$ and that is that the table's modules must be exactly all the primes less than or equal to the $\sqrt{\left(\mathrm{N}_{0}\right)}$.

In the case of our example table [1,210] we can say that only for the N_{0} such that $7 \leq \sqrt{\left(N_{0}\right)}<11$, i.e. for N_{0} greater than or equal to 49 and less than 121 we can say that the numbers in the table n_{0} prisotto of N_{0} are such that $\mathrm{N}_{0}-\mathrm{n}_{0}$ is a prime number.

Similarly, to infer from the table-interval $\left.] 0, p_{\max } \#\right]$ and from the information contained therein how many prime numbers there are in the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$ with $\left.\left.\mathrm{N}_{0} \in\right] 0, p_{\max } \#\right]$ using the criterion (Corollary 1.4.3) of the Primality of Compcongruence we must impose that the modules $\{2,3, \ldots . .$, , $\left.\mathrm{p}_{\max }\right\}$ of the table are exactly all the primes less than or equal to the $\sqrt{\left(2 \mathrm{~N}_{0}\right)}$. With this condition we will have that the numbers of the table incompcongruent less than N_{0} are pri N_{0} such that such that $\mathrm{N}_{0}+\mathrm{n}_{0}$ is a prime number.

In the case of our table [1,210] for example we can say that only for the N_{0} such that $7 \leq \sqrt{\left(2 \mathrm{~N}_{0}\right)}<$ 11 and i.e. for N_{0} greater than or equal to 25 and less than 61 we can say that the numbers n_{0} incompcongruous less than N_{0} are prisopra of N_{0} and i.e. that added to N_{0} give the prime numbers of the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$.

1.7 From N_{0} to the primes of the interval $] 0,2 N_{0}$]

If then, fixed at any $N_{0} \in N$ greater than 49 , we want to find out how many prime numbers are less than or equal to N_{0} we must first find the highest prime number $p_{\max }$ less than or equal to $\sqrt{\left(\mathrm{N}_{0}\right)}$ and then consider the number-class table $\left.\left.p_{\max }\right] 0, p_{\max } \#\right]$, where $\mathrm{p}_{\max } \#$ is the prime of $\mathrm{p}_{\max }$ and corresponds to the product of prime numbers $\leq p_{\max }$ Since the prime $p_{\max } \#$ coincides with the prime $\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}$ \# in the remainder of the study we will write either $\left.] 0, p_{\max } \#\right]$ o $] 0, \sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}$ \#] to indicate the

Remark 1.7.1 The condition that N_{0} is greater than or equal to 49 follows from the requirement that N_{0} belongs to the interval J0, $\left.p_{\max } \#\right]$.

From what is written in observation (1.6.1) the number of primes less than or equal to N_{0} is given to us, minus the primes less than the $\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}$ e cioè i forms $2,3, \ldots ., p_{\max }$ on which the table is constructed, by that of the numbers in the table prisotto of N_{0}, a number which, according to observation (1.2.5) will always be equal to or greater than 1 .
E.g. with $N_{0}=315$ we will have that $\sqrt{315}=17.746$ and therefore $p_{\max }$ will be equal to $17, p_{\max } \#$ $(2 * 3 * 5 * 7 * 11 * 13 * 17)$ will equal 510510 and the number 315 will correspond, in the interval [0, $\left.p_{\max } \#\right]$, one and only one combination of its congruence classes $\bmod 2, \bmod 3, \bmod 5, \bmod 7, \bmod$ $11, \bmod 13$ and $\bmod 17$. All n_{0} less than N_{0} and incongruent with it with respect to $\mathrm{p}_{\mathrm{i}} \leq p_{\max }$ i.e. all n_{0} prisotto of N_{0}, sottrattiad N_{0} result in all prime numbers less than N_{0}, except the primes $2,3,5,7,11,13,17$ on which the table is built. On the other hand, according to the corollary (1.2.3) and observation (1.6.1), nothing can be said about the other numbers della tabella m_{0} magggiori di 315 and incongruous with it p modules ${ }_{i}$ belonging to $\mathbb{P}(\sqrt{(315)})$.

Similarly, if we want to find, via a number table $p_{\text {max }}$ how many prime numbers there are in the interval $\left[\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$ with any $\mathrm{N}_{0} \geq 121$, we must first find the highest prime number $p_{\max }$ less than the $\sqrt{2 N_{0}}$ and then consider the number-class table $\left.\left.p_{\max }\right] 0, \sqrt{\left(2 \boldsymbol{N}_{0}\right)} \#\right]$. Again, the condition that N_{0} is greater than or equal to 121 follows from the requirement that $2 \mathrm{~N}_{0}$ belongs to the interval $] 0$, $\left.\sqrt{\left(2 N_{0}\right)} \#\right]$. According to observation (1.6.1), the number of primes in the interval [$\left.\mathrm{N}_{0}, 2 \mathrm{~N}_{0}\right]$ is given to us by that of the numbers in the table prisopra of N_{0}, a number which according to observation (1.4.4) will always be equal to or greater than 1 .

If we maintain the previous example of $\mathrm{N}_{0}=315$, we must in this case calculate the $\sqrt{2 * 315}$ which is 25.1 , from which it follows that $p_{\max }$ will be equal to $23, \sqrt{\left(2 N_{0}\right)} \#$ (equal to $2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23$) will be equal to 223092870 and the number 315 will correspond, in the interval $] 0, \sqrt{\left(2 N_{0}\right)}$ \#], one and only one combination of its congruence classes mod 2 , $\bmod 3$, mod $5, \bmod 7, \bmod 11, \bmod 13, \bmod 17, \bmod 19, \bmod 23$. All n_{0} less than N_{0} and incompcongruent with it, i.e. all n_{0} prisopra of N_{0}, added to N_{0} will result in all prime numbers in the interval $\left[\mathrm{N}_{0}, \mathbf{2} \mathrm{~N}_{0}\right]$. On the other hand, according to the corollary (1.4.3) and observation (1.6.1), nothing can be said about the other numbers della tabella m_{0} greater than 315 and incompcongruent with it modules $\mathbb{P}(\sqrt{(315)})$.

2 The distribution of prime numbers

2.1 Fundamental prime number theorem

Gauss's Conjecture, dating back to 1792 and later becoming the Prime Number Theorem (NPT), on the distribution of prime numbers is:

$$
\begin{equation*}
\pi(N) \approx \frac{N}{\log N} \approx \int_{2}^{N} \frac{d t}{\log t} \approx L i(N) \tag{2.1.1}
\end{equation*}
$$

where $\pi(\mathrm{N})$ is the number of primes less than or equal to N .
This conjecture was first proved in 1986 by Hadamard and de La Vallé Poussin using methods from the theory of complex functions related to the properties of Riemann's ζ-function. Mathematicians of
the time, and in particular G. H. Hardy, believed that complex analysis was necessarily involved in the Theorem and that methods with only real variables were to be considered inadequate. But in 1949, Erdös and Selberg [3.4 of (a)] independently published an elementary proof (i.e. with only real variables), based on the combinatorial technique, of the Prime Number Theorem.

The demonstration of Selberg - Erdős [3.4 of (a)] thus brought into play the supposed superiority (depth) of complex analysis for the demonstration of NPT, showing that even technically elementary methods, which we have also adopted in this study, have their demonstrative effectiveness.

2.2 The average density of the n_{0} incongruous of N_{0} in the table $\left.] 0, \sqrt{\left(N_{0}\right)} \#\right]$

Having fixed any $\boldsymbol{N}_{\mathbf{0}} \boldsymbol{\in} \boldsymbol{N}$ greater than 49 , we consider (see paras. 1.6 and 1.7) the relevant numberclass table $p_{\max }$ of the interval $\left.] 0, p_{\max } \#\right]$, where $p_{\max }$ is the highest prime number less than or equal to the $\sqrt{\left(N_{0}\right)}$, and calculate the number of all (greater than and less than N_{0}) the n_{0} incongruous of N_{0} present in the table.

We then eliminate from this table the rows that have one or more classes of congruence of the p modules $_{i}\left(2,3,5, \ldots . ., p_{\max }\right)$ equal to the class corresponding to the remainder of N_{0} for the same modules.

The numbers M in the table, not eliminated through the previous sieve, can then only be those which in the number-class table $\mathrm{p}_{\max }$ have for each $\mathrm{p}_{\mathrm{i}} \boldsymbol{\epsilon} \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$ one of the $\mathrm{p}_{\mathrm{i}}-1$ possible congruence classes other than the corresponding N_{0}. (If e.g. $\left(\mathrm{N}_{0}\right) \bmod 7=3$, (M) mod7 must be equal to one of the $6(7-1)$ other possible congruence classes: $0,1,2,4,5,6$)

The rows of the table that have not been deleted will then, according to the combinatorial calculation, be:

$$
\begin{equation*}
\prod_{p=2}^{p_{\max }}(p-1) \tag{2.2.1}
\end{equation*}
$$

Thus, (2.2.1) gives us the quantity of all \mathbf{M} numbers in the table incongruous (less than and greater than) than $\mathbf{N}_{\mathbf{0}}$ for the \mathbf{p} modules only $\mathbf{y}_{\mathbf{i}}$ belonging to the set $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$.

Let us now calculate the average density $\mathrm{Dnc}_{\left[0, \sqrt{N_{0}} \#\right]}$ of these numbers M existing in the interval] 0, $\left.\sqrt{\left(N_{0}\right)} \#\right]$ with $\sqrt{\left(N_{0}\right)} \#=2 * 3 * \ldots \ldots . . * p_{\max }$ can be written:
(2.2.2) $\operatorname{Dnc}_{] 0, \sqrt{\left.N_{0} \#\right]}}=\frac{\prod_{p=2}^{p_{\max }}(p-1)}{2 * 3 * \ldots * p \max }=\frac{\prod_{p=2}^{p_{\max }}(p-1)}{\prod_{p=2}^{p_{\max }} p}=\prod_{p=2}^{p_{\max }} \frac{(p-1)}{p}$
[formula this multiplied by $\sqrt{\left(N_{0}\right)}$ \# corresponds to the Euler function $\varphi(n)$ with $n=\sqrt{\left(N_{0}\right)}$ \#, and gives the number of coprimes less than $\sqrt{\left(N_{0}\right)}$ \#, a number which also includes the number of primes less than N_{0} except for the primes belonging to the set $\left.\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)\right]$

On the basis of the corollary (1.2.3) of the Primality of Congruence and the fact that all numbers M less than $\mathrm{N}_{\mathbf{0}}$ ($\mathbf{M}_{\mathbf{N} 0}$) are prisotto of $\mathbf{N}_{\mathbf{0}}$, we can state that, for each of these numbers $\mathrm{M}_{\mathrm{N} 0}, \mathrm{~N}_{0}-\mathrm{M}_{\mathrm{N} 0}$ is a prime number and that the average density $D n c_{\left.j 0, N_{0}\right]}{ }^{1)}$ of $\mathrm{M}_{\mathrm{N} 0}$ in the interval $\left.] 0, \mathrm{~N}_{0}\right]$ is given by:
(2.2.3) $D n c_{\left.] 0, N_{0}\right]}=\frac{\mathrm{Q}\left(M_{N 0}\right)}{N_{0}}$ denoting by $\mathrm{Q}(\mathrm{M})_{\mathrm{N} 0}$ the number of $\mathrm{M}_{\mathrm{N} 0}$ present in the interval $] 0$, $\left.\mathrm{N}_{0}\right]$.

As per observation (1.2.4) the number of all primes $\pi(\mathrm{N})_{0}$ less than or equal to N_{0} is given by the sum of the number of $\mathrm{M}_{\mathrm{N} 0}$ and that of all $\mathrm{p}_{\mathrm{j}} \in \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$ which, as we know, are not among the N_{0} - $\mathrm{M}_{\mathrm{N} 0}$.

We then know from NPT (2.1) that the average density $\operatorname{Dprimi}_{N 0}$ of the prime numbers less than N_{0} , which coincides, barring the p_{i} belonging to the $\operatorname{set} \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$, with the average density $D n c_{N 0}$ of the numbers $\mathrm{M}_{\mathrm{N} 0}$ prisotto of $\mathrm{N}_{\mathbf{0}}$ is given by:

$$
\begin{equation*}
D \operatorname{primi}_{]_{\left.0, N_{0}\right]}}=\frac{\pi\left(N_{0}\right)}{N_{0}}=\frac{1}{\log N_{0}} \approx D n c_{\left[0, N_{0}\right]} \tag{2.2.4}
\end{equation*}
$$

That is, for the density Dprimino one must consider, in addition to the numbers $\mathrm{M}_{\mathrm{N} 0}$ less than N_{0} and incongruous with it, also the pi belonging to the set $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$ and consequently Dprimi always results ${ }_{N 0}>D n c_{N 0}$. Let us then calculate the error that is made by setting Dprimi $=$ Dnc $_{\mathrm{N} 0}$. According to NPT (2.1) we can write:
(2.2.5) $D n c_{\left.] 0, N_{0}\right]}=\frac{\left(\frac{N_{0}}{\log N_{0}}-\frac{\sqrt{N_{0}}}{\log \sqrt{N_{0}}}\right)}{N_{0}} \quad$ e primi $_{\left.] 0, N_{0}\right]}=\frac{1}{\log N_{0}}$

Observation 2.2.6 Having ascertained that it always results $\operatorname{Dprimi}_{]_{\left.0, N_{0}\right]}}>\operatorname{Dnc}_{\left[0, N_{0}\right]}$ one can easily calculate that the percentage error in positing $\operatorname{Dprimi}_{]_{\left.0, N_{0}\right]}}=D n c_{\left[0, N_{0}\right]}$ is 20% for $N_{0}=10^{2}$, 2% for $N_{0}=10^{4}, 0.02 \%$ for $N_{0}=10^{8}$, and that it is gradually decreasing for increasing values of N_{0}.

3 The Proof of the Hardy-Littlewood Conjecture

3.1 The Twin Numbers

Every prime number greater than 2, likewise every odd number, can be written as the sum or difference of an even number and 1. In the case of a pair of prime twins there will obviously be a single even number which when added to 1 and subtracted by 1 will give rise to the prime twins of the pair.

We call an even twin and denote by the symbol PG any even number $n \in N$ such that $n+1$ and $n-1$ are two prime numbers.

3.2 The Equal Twins Theorem

Definition 3.2.1 $\forall n_{0} \in N$, even and greater than 4 , with $\mathbb{P}\left(\sqrt{\left(n_{0}+1\right)}\right)$ set of odd primes \leq $\sqrt{\left(n_{0}+1\right)}$, a necessary and sufficient condition for no +1 and no -1 to be twin primes is that $n_{0} \not \equiv 1\left(\bmod p_{i}\right)$ and $n_{0} \nVdash 1\left(\bmod p_{i}\right) \forall p_{i} \in \mathbb{P}\left(\sqrt{\left(n_{0}+1\right)}\right)$ or that $\mathbb{P}\left(\sqrt{\left(n_{0}+1\right)}\right)$ is an empty set.

PROOF. From the two Primality Theorems (1.2.1) and (1.4.1), assuming $\mathrm{N}_{0}=\mathrm{n}_{0}$ and $\mathrm{n}_{0}=1$ it follows that, if 1 is incongruous and incompcongruous with $\mathrm{n}_{0} \mathrm{p}$ modules $\forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}+1\right)}\right)$, e di conseguenza $\forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}-1\right)}\right)$ essendo $\mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}-1\right)}\right) \subseteq \mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}+1\right)}\right)$, or if $\mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}+1\right)}\right)$ is an empty set, $\mathrm{n}_{0}+1$ and $\mathrm{n}_{0}-1$ are twin primes.
Conversely, if $n_{0}+1$ and $n_{0}-1$ are twin primes, this means that they are not divisible by any prime less than or equal to the $\sqrt{\left(\mathrm{n}_{0}+1\right)}$ and that therefore, again by (1.2.1) and (1.4.1), n_{0} and 1 are incongruous and incompcongruous $\forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}+1\right)}\right)$ and therefore $\forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}-1\right)}\right)$.

We set $\mathrm{n}_{0} \geq 4$ because with $\mathrm{n}_{0}=2$ we would have that $\mathrm{n}_{0}-1=1$ which, as we know, is neither a prime nor a compound number.

If instead of referring to the set $\mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0}+1\right)}\right)$ we refer, for the sake of subsequent demonstrations, to the set $\mathbb{P}\left(\sqrt{N_{0}}\right)$ with $\mathrm{N}_{0} \in \mathrm{~N}$ e maggiore di n_{0} the theorem (3.2.1) is transformed into the following corollary:

Corollary 3.2.2 $\forall N o, n o \in N$, with $N o \geq 9$ and with no even and $p_{\max }<n_{0}<N o$, with $\mathbb{P}\left(\sqrt{N_{0}}\right)$ set of odd prime numbers $\leq \sqrt{\left(N_{0}\right)}$ and with $p_{\text {max }}$ higher prime number than $\mathbb{P}\left(\sqrt{N_{0}}\right)$, a necessary and sufficient condition for no +1 and no -1 to be twin primes is that 1 be an incongruous and incompcongruous number ofno.

Proof. substituting $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$ a $\mathbb{P}\left(\sqrt{\left(n_{0}+1\right)}\right)$ the numbers n_{0} even less than $p_{\max }$ and such that n_{0} $\pm 1=\mathrm{p}_{\mathrm{j}}$, with $\mathrm{p}_{\mathrm{j}} \in \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$, are not taken into account since, for the same $\mathrm{p}_{\mathrm{j}} \in \mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$, they have a congruence class mod p_{j} equal and/or complementary to that of equal modulus of 1 . In fact, if $\mathrm{n}_{0} \pm 1=\mathrm{p}_{\mathrm{j}}$ according to modular arithmetic it will always be the case that $\left[\mathrm{n}_{0}\right] \bmod \mathrm{p}_{\mathrm{j}} \pm[1] \bmod \mathrm{p}_{\mathrm{j}}=$ $\left[p_{j}\right] \bmod p_{j}=[0]$ from which the congruence and/or compcongruence $\bmod p_{j}$ of 1 with n_{0} follows.
Conversely, if $\mathrm{n}_{0}+1$ and $\mathrm{n}_{0}-1$ are twin primes greater than $\mathrm{p}_{\max }$ and less than N_{0} it means both that, according to (1.2.1) and (1.4.1), n_{0} and 1 are incongruous and incompcongruous $\forall \mathrm{p}_{\mathrm{i}} \in$ $\mathbb{P}\left(\sqrt{\left(n_{0} \pm 1\right)}\right)$, but also that, since $n_{0}+1$ and $n_{0}-1$, as primes, are not divisible by any prime less than or equal to $\sqrt{\left(\mathrm{N}_{0}\right)}, \mathrm{n}_{0}$ and 1 are incongruous and incompcongruous anche $\forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$. He placed himself $\mathrm{N}_{0} \geq 9$ in quanto per valori inferiori $p_{\max }$ would not be defined.

Since in the interval $\left.] 0, N_{0}\right]$, with $N_{0} \geq 9$ and $n_{0}>p_{\max }$ there is always at least one prime (observation 1.2.5), surely there will always exist an n_{01} and an n_{02} of which 1 is incongruous and incompcongruous; but in order to prove the Hardy-Littlewood conjecture [1 of (c)] we must ascertain both that there exists at least one $\mathrm{n}=\mathrm{n}=00102$, ni.e. an even twin number (PG), smaller than N_{0}, of which 1 is incongruous and incompcongruous modulo p_{i} for all p_{i} belonging to the $\operatorname{set} \mathbb{P}\left(\sqrt{\left(\boldsymbol{N}_{\mathbf{0}}\right)}\right)$, let it be that for $\mathrm{N}_{0} \rightarrow \infty$ the number of PGs also tends to infinity with a definite relation.
To this end, we resort to the study of the density of twin peers.

3.3 The density of twin peers

All n_{0} that satisfy the conditions of corollary (3.2.2) are even PG twins with the following characteristics:

- the class of PG module 2, PG being even, is always zero while the class of 1 module 2 is always 1 (with complement equal to 1) and consequently 1 will always be incongruous and incompcongruous with PG module 2
- PG classes of the next module $\left(3,5,7,11\right.$, etc.) present in $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$ must not be equal to the classes of 1 and their $\mathrm{p}-1$ complements of the same module (e.g. if $P G=18$ and $N_{0}=24$ we have that $\mathbb{P}\left(\sqrt{\mathrm{N}_{0}}\right)=\{3\} ;[18]_{\bmod 3}=0$ and its complement is still equal to $0,[1]_{\bmod 3}=[1]$ and its complement is equal to 2 and therefore 1 is incongruous and incompcongruous with $P G$ so that $18+1$ and $18-1$ are twin primes).

Having said this, let us see how to calculate the number of PGs and thus of pairs of twins less than a $N_{0} \geq 49$, a condition (see observation 1.7.1) arising from the necessity that N_{0} belongs to the interval $\left.] 0, p_{\max } \#\right]$ where $\mathrm{p}_{\max }$ is the highest prime number less than or equal to the $\sqrt{\left(\mathrm{N}_{0}\right)}(\underline{1.5)}$.

Having then selected any $\mathrm{N}_{0} \geq 49$ we denote by $\mathrm{p}_{\max }$ the highest prime number of $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$. Let us then consider the interval/table of natural numbers $\left.] 0, \mathrm{p}_{\max } \#\right]$ and now eliminate from this table the rows that have: congruence class mod 2 equal to [1]; congruence classes of successive modules $(3,5$, $\ldots . ., p_{\max }$) equal to the classes of 1 and their complements $\mathrm{p}-1$ for the same modules.
The numbers \mathbf{M} of the number-classes table $\mathrm{p}_{\text {max }}$, not eliminated through the previous sieve, can then only be those which in their corresponding combination of congruence classes present only the class [0] of the two possible congruence classes mod 2 and one of the $p_{i}-2$ (for each p_{i} belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$) possible classes of congruence of the successive modules $\left(3,5, \ldots . ., \mathrm{p}_{\max }\right)$, that is, with the exclusion of the classes of 1 and their complements for the same modules (if e.g. (M) mod7 $=1$ with complement $=6, M$ will not be a twin pair since (1) $\bmod 7=1$ with complement $=6$; to be a twin pair it is necessary that (M) mod7 is equal to one of the $5(7-2)$ possible other classes of congruence: $0,2,3,4,5$)

The rows (combinations of classes) of the table that have not been deleted will then, according to combinatorial calculation, be:

$$
\begin{equation*}
\prod_{p=3}^{p_{\max }}(p-2) \tag{3.3.1}
\end{equation*}
$$

Thus, (3.3.1) gives us the quantity of the numbers \mathbf{M} of the table-interval $\left.] 0, p_{\text {max }} \#\right]$ of which 1 is not congruent and is not compcongruent only for the modules p_{i} belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$ and nothing can be said about the possible (non) congruence and (non) compcongruence of 1 with these numbers with respect to the other modules p_{j} greater than $\mathrm{p}_{\max }$ and belonging to the set $\mathbb{P}(\sqrt{(\text { pmax\# })}))$. On the basis of the corollary (3.2.2) we can then state that all numbers $\mathbf{M}(\mathbf{P G})$ less than $\mathbf{N}_{\mathbf{0}}$, being non-congruent and non-compcongruent with 1 for all modules p_{i} belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$, are even twin numbers (PG).

Remark 3.3.2 By the same corollary (3.2.2) we also know, however, that these numbers $M(P G)$, of which 1 is not compcongruent with respect to the modules $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$, do not include the PGs relative to the pairs of primes less than the $\sqrt{N_{0}}$ and consequently their average density Dncncomp $(P G)_{N 0}$ will always be lower than that $D p g_{N 0}$ of all pairs of P twins $G_{N 0}$ less than N_{0}.

We now calculate the average density Dncncomp $^{\left.00, p_{\max } \#\right]}$ of the PG numbers existing in the interval $\left.] 0, p_{\max } \#\right]$ of which 1 is non-congruent for the p -modules s_{i} belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathrm{N}_{0}\right)}\right)$. Knowing that $\mathrm{p}_{\max } \#=2 * 3 *$....... ${ }^{*} \mathrm{p}_{\max }$, we can write:
(3.3.3) Dncncomp $_{\left.j 0, p_{\max } \#\right]}=\frac{\prod_{p=3}^{p \max }(p-2)}{\prod_{p=2}^{p \max } p}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p}$
multiplying and dividing the second term of the same by ($\mathrm{p}-1$) we obtain:
(3.3.4) Dncncomp $_{\left.\mathrm{j} 0, p_{\text {max }} \#\right]}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p} * \frac{(p-1)}{(p-1)}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-1)}{p} * \prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}=$ $\prod_{p=2}^{p \max } \frac{(p-1)}{p} * \prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}$

In the last member of (3.3.4) we have substituted for $\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-1)}{p}$ the term $\prod_{p=2}^{p \max } \frac{(p-1)}{p}$ which, as we know from (2.2.2), corresponds, always for $N_{0} \geq 49$, to the average density $D n c_{] 0, ~}^{\left.\bar{N}_{0} \#\right]}$ of the numbers M existing in the interval $\left.] 0, \mathrm{p}_{\max } \#\right]$ not congruent of $\mathbf{N} \mathbf{~ f o r ~ o n l y ~ t h e ~ m o d u l e s ~} \mathbf{p}_{\mathbf{i}}$ belonging to the set $\mathbb{P}\left(\sqrt{\left(N_{0}\right)}\right)$; in these last three formulae $\mathrm{p}_{\max }$ is the highest prime number less than or equal to the $\sqrt{\left(N_{0}\right)}$.

Let us then see if we can find a relationship between $\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}$ e $\prod_{p=2}^{p \max } \frac{(p-1)}{p}$ so that we can determine the value of $D_{n c n c o m p}^{\left.] 0, p_{\max } \#\right]}$ as a function of $D n c_{] 0, ~}^{\left.N_{0} \#\right]}$.

We can write:
(3.3.5) $\frac{\prod_{p=3}^{p \max (p-2)}(p-1)}{\prod_{p=2}^{p \max \left(\frac{1-1)}{p}\right.}}=\prod_{p=3}^{\operatorname{pmax}} \frac{(p-2)}{(p-1)} * \prod_{p=2}^{p \max } \frac{p}{(p-1)}=\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)} * 2 * \prod_{p=3}^{p \max } \frac{p}{(p-1)}=2 * \prod_{p=3}^{p \max } \frac{p *(p-2)}{(p-1)^{2}}$
where one can easily verify that the relationship between the term $\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}$ and that $\prod_{p=2}^{p \max } \frac{(p-1)}{p}$ for $\mathrm{N}_{0}=49$ takes on the value 0.68359375 , for $\mathrm{N}_{0}=9006001$ the value 0.6601862196 and then, as N increases ${ }_{0}$ towards infinity, and thus extending the product over all prime numbers ≥ 3, it tends rapidly to decrease towards the constant of the prime twins C_{2} that appears in the Hardy-Littlewood conjecture on the distribution of prime twins:
$\prod_{p \geq 3} \frac{p *(p-2)}{(p-1)^{2}}=\mathrm{C}_{2} \approx 0.6601611813846869573927812110014$ \qquad
We can therefore write:

$$
\begin{equation*}
\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)} \approx 2 * \mathrm{C} * 2 \prod_{p=2}^{p \max } \frac{(p-1)}{p} \tag{3.3.6}
\end{equation*}
$$

which substituted in (3.3.4) gives us:
$\operatorname{Dncncomp}(P G) \approx \prod_{p=2}^{p \max } \frac{(p-1)}{p} * \prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)} \approx 2 * \mathrm{C} * 2\left(\prod_{p=2}^{p \max } \frac{(p-1)}{p}\right)^{2}$
from which according to (2.2.2):
(3.3.7) $\operatorname{Dncncomp}_{\left.(\mathrm{PG})] 0, p_{\max } \#\right]} \approx 2 * \mathrm{C}_{2} *\left(D n c_{j 0, ~}{\left.\left.\sqrt{\bar{N}_{0}} \#\right)\right)^{2}}^{2}\right.$

In this relation $\operatorname{Dncncomp}_{\left.(\mathrm{PG})] 0, p_{\max } \#\right]}$ to the square of Dnc the constant C_{2} changes little as N varies $_{0}$ and thus as p varies $_{\max } \#$. The sieve that determines the density Dncncomp $_{\left.(\mathrm{PG})] 0, p_{\max } \#\right]}$ in fact depends neither on N_{0} nor on $\mathrm{p}_{\text {max }}$ \# but only on the incongruity and incompcongruity of 1 with an $\mathrm{n}_{0}=\mathrm{PG} \forall \mathrm{p}_{\mathrm{i}} \in \mathbb{P}\left(\sqrt{\left(\mathrm{n}_{0} \pm 1\right)}\right)$.
It can therefore be written with good approximation:
(3.3.8) Dncncomp $_{\left[0, N_{0}\right]} 2 * 2 * \mathrm{C} \approx\left(\operatorname{Dnc}_{\left[0, N_{0]}\right]}\right)^{2}$

Comment 3.3.9 In (3.3.8) as stated in Comments (3.3.2) and (2.2.6) both Dncncomp $\left.p_{00} N_{0}\right]$ and $D n c_{\left[0, N_{0]}\right]}$ do not include the possible n_{0} for which $n_{0} \pm 1$ are equal to the primes less than or equal to the $\sqrt{\left(N_{0}\right)}$ but since this relation is always valid $\forall N_{0} \in N$ starting from $N_{0}=49$ we can extend (3.3.8) to all the numbers no of which 1 is not congruous and not compcongruous and which when added to or subtracted from 1 result in the primes (except $2,3,5,7$) less than any N_{0} greater than 49. In fact for $N_{0}=49$ (and therefore $\sqrt{49}=7$) the (3.3.8) concerns all the n_{0} of which 1 is not congruous and not compcongruous that subtracted and added to 1 give as result the first twins between 8 and 49; for $N_{0}=121$ (and therefore $\sqrt{121}=11$), (3.3.8) concerns the first twins between 12 and 121;
for $N_{0}=169$ (and thus $\sqrt{169}=13$), (3.3.8) concerns the first twins between 14 and 169; and we can continue in this way for all subsequent No equal to the squares of the first twins after 13.

But it can be verified, assuming $\mathrm{N}_{0}=49$ and thus $\mathrm{C}_{2}=0.6835$, that (3.3.8) with an approximation of about 5%, also subsists taking into account primes $2,3,5,7$. In fact with $\mathrm{N}_{0}=49$ we count 15 primes and 6 even twins whence (3.3.8) becomes:
$\frac{6}{49} \approx 2 * 0,6835 *\left(\frac{15}{49}\right)^{2}$
$0,1224 \approx 0,1281$
Obviously, as N increases 0 , subject to the validity of (3.3.8) for all primes greater than 7, the approximation decreases.
Ultimately, we can then hold that $\forall \mathrm{N}_{0} \in \mathrm{~N}$ greater than 49 , (3.3.8) is valid for all primes less than $\mathrm{N}_{0} \quad$ and \quad therefore, substitute $\quad \mathrm{Dpg}_{\mathrm{N} 0}$ al posto di \quad Dncncomp $(\mathrm{PG})_{(\mathrm{N} 0)}$ e $\operatorname{Dprimi}_{]_{\left.0, N_{0]}\right]}}$ al posto di $D n c_{\left[0, N_{0]}\right]}$, writing:
(3.3.10) $\mathrm{Dpg}_{\mathrm{N} 0} \approx 2 * \mathrm{C}_{2} *\left(\text { Dprimi }_{\left.]_{0,}, N_{0]}\right]}\right)^{2}$

Being then for the NPT Dprimi ${ }_{\left.j 0, N_{0]}\right]}=\frac{1}{\log N_{0}}$ one can write:

$$
\begin{equation*}
\mathrm{Dpg}_{\mathrm{N} 0} \approx 2 * \mathrm{C}_{2} *\left(\frac{1}{\log N_{0}}\right)^{2} \tag{3.3.11}
\end{equation*}
$$

and multiplying both members by N_{0} :

$$
\begin{equation*}
\mathrm{P} G_{N 0} \approx \mathrm{~N} * 2 * \mathrm{C} *{ }_{02}\left(\frac{1}{\log N_{0}}\right)^{2} \tag{3.3.12}
\end{equation*}
$$

Appendix C gives an example of n_{0} of which 1 is prisotto and prisopra and the corresponding values of $D n c_{\left[0, N_{0]}\right]}$, Dncncomp $_{\left[0, N_{0]}\right]}$ and $\mathrm{PG}_{\mathrm{No}}$ verified and calculated.

For $\mathrm{N}_{0}=49$ the (3.3.12) $\mathrm{P} G_{N 0}$ takes a value greater than 5 and, since $\mathrm{N} *_{0}\left(\frac{1}{\log N_{0}}\right)^{2}$ an increasing function with $\mathrm{N}_{0}, \mathrm{P} G_{N 0}$ will always grow as N_{0} tends to infinity with a distribution (3.3.12) equal to that predicted by the Hardy-Littlewood conjecture [(c)]:
$\pi_{2}(\mathrm{x}) \approx \mathrm{x} * 2 * \mathrm{C} * 2\left(\frac{1}{\log x}\right)^{2}$
The even twins, i.e. pairs of prime twins, are therefore infinite and (3.3.12) is their distribution law.

4 The Proof of the Goldbach Conjecture

Goldbach's conjecture assumes that for every even number $2 \mathrm{~N}_{0}$ there exist one or more numbers n $\in \mathrm{N}$ such that $\mathrm{N}_{0}-\mathrm{n}$ and $\mathrm{N}_{0}+\mathrm{n}$ are two prime numbers whose sum is obviously equal to $2 \mathrm{~N}_{0}$.

Given an $\mathrm{N}_{0} \in \mathrm{~N}$ we denote by the letter G every number $\mathrm{n} \in \mathrm{N}$ such that $\mathrm{N}_{0}-\mathrm{n}$ and $\mathrm{N}_{0}+\mathrm{n}$ are two prime numbers.

4.1 The G Number Theorem of N_{0}

Definition 4.1.1 $\forall N, n_{0} \in N$ and no even if N_{o} is odd or vice versa, with $N_{o} \geq 9,0 \leq n_{0} \leq N_{0}-p$, max with pmax being a prime number higher than $\mathbb{P}\left(\sqrt{2 N_{0}}\right)$, where $\mathbb{P}\left(\sqrt{2 N_{0}}\right)$ è l^{\prime} set of odd prime numbers $\leq \sqrt{\left(2 N_{0}\right)}$, a necessary and sufficient condition for $N o-n o$ and $N o+n o$ to be two prime numbers is that n_{0} is a prisotto number and prisopra of N_{0}.

Proof. From the Corollaries (1.2.3) and (1.4.3), placing the most restrictive conditions between the two, derive the necessary and sufficient conditions of the Theorem. Just as from Observations (1.2.5) and (1.4.4) it follows that there surely exists at least one n_{01} prisotto and at least one n_{02} prisopra of N_{0} but we cannot derive from them that esiste anche un $n_{0}=\mathrm{n}_{01}=\mathrm{n}_{02}$.
To prove Goldbach's conjecture, on the other hand, it must be established that for every $\mathrm{N}_{0} \geq 9$ there exists at least un $n_{0}=n_{01}=n_{02}$ i.e. a number G, prisotto and prisopra of N_{0}.

Apart from the special case of a prime N_{0} and thus the certain existence of a $G=0$, we must therefore prove that for every N_{0} there always exists a G prisotto and prisopra of N_{0} and thus that there always exist two prime numbers equidistant from N_{0} :
$\mathrm{p}_{1}=\mathrm{N}_{0}-G$
$\mathrm{p}_{2}=\mathrm{N}_{0}+G$
and whose sum is evidently equal to $2 \mathrm{~N}_{0}$.
To this end, we resort to the study of the density of numbers G.

4.2 The density of numbers G

Let us say right away that each G must have the following characteristics:

- its class of modulus 2 must be equal to zero if N_{0} is odd, to 1 if N_{0} is even;
- its successive first module classes $\left(3,5,7\right.$, etc.) less than or equal to the $\left(\sqrt{2 N_{0}}\right)$ must not be equal to the two classes corresponding to the remainder (for non-congruence) and its complement (for non-compcongruence) of N_{0} for the same modules (e.g. if $N_{0}=43$ and $G=30$ we have that $\mathbb{P}\left(\sqrt{\mathrm{N}_{0}}\right)=\{3,5\} ;[43]_{\bmod 3}=1$ with a complement equal to $2,[43]_{\bmod 5}$ $=3$ with a complement equal to $2 ;[30]_{\bmod 3}=[0]$ and $[30]_{\bmod 5}=[0]$; therefore G is prisotto and prisopra of N_{0} and therefore $73(43+30)$ and $13(43-30)$ constitute a pair of primes whose sum is equal to $2 N_{0}$).

Having said this, let us see how to calculate the number of G less than an $N 0 \geq 121$ (a condition deriving as we know (1.7.1) from the need for $2 \mathrm{~N}_{0}$ to belong to the interval $\left.\left.] 0, \sqrt{\left(2 N_{\mathbf{0}}\right)} \#\right]\right)$.
Having then selected any $N_{0} \geq 121$, we call $p_{\max }$ the highest prime number less than or equal to the $\sqrt{\left(\mathbf{2} \boldsymbol{N}_{\mathbf{0}}\right)}$. Let us then consider the table-interval of natural numbers $\left.] 0, \mathrm{p}_{\max } \#\right]$ where $\mathrm{p}_{\max } \#$ is the prime of $\mathrm{p}_{\max }$ and corresponds to the product $2 * 3 * 5 * \ldots . . .{ }^{*} \mathrm{p}_{\max }$, a product that corresponds to the last number of the relevant Number-Class Table $p_{\max }$ (1.5.1) of bi-univocal correspondence between the numbers of the interval and the respective combinations of their congruence classes.

Let us now eliminate from this table $\left.] 0, \mathrm{p}_{\max } \#\right]$ each of the rows that has a congruence class mod 2 equal to 0 or to 1 depending on whether N_{0} is even or odd, and/or congruence classes of the following modules $\left(3,5, \ldots . ., \mathrm{p}_{\max }\right)$ equal to one of the two classes corresponding to the remainder and complement of N_{0} for the same modules.
The M-numbers in the table, which were not eliminated through the previous sieve, can then only be:
a) those which in the number-class table $p_{\text {max }}$ have in their corresponding combination of congruence classes only one of the two possible congruence classes modulo 2
b) those which in the number-class table $\mathrm{p}_{\max }$ for each odd p_{i} belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathbf{2 N _ { \mathbf { 0 } })}\right)}\right.$ and NOT FACTOR of N_{0} have in their corresponding combination of congruence classes one of the $\mathrm{p}_{\mathrm{i}}-2$ possible congruence classes of the modules $3,5, \ldots .$. , $\mathrm{p}_{\text {max }}$ that is, with the exclusion of the two classes corresponding to the remainder and the complement of N_{0} for the same modules p_{i} (ife.g. (N_{0}) mod7 $=3$ with complement $=4$, $(M) \bmod 7$ must be equal to one of the 5 (7-2) other possible congruence classes: $0,1,2,5,6$)
c) those which in the number-class table $p_{\max }$ for every odd p_{i} belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathbf{2 N} \mathbf{N}_{\mathbf{0}}\right)}\right)$ and FACTOR of N_{0} have in their corresponding combination of congruence classes one of the $p_{i}-1$ possible congruence classes other than [0] that constitutes both the remainder and the complement of N_{0} for the same module-factors.

The numbers N_{0} with factors other than p_{i} odd belonging to the set $\mathbb{P}\left(\sqrt{\left(\mathbf{2 N} \mathbf{N}_{\mathbf{0}}\right)}\right)$ and which therefore fall under category b) of the previous classification, are the prime numbers outside the set $\mathbb{P}\left(\sqrt{\left(\mathbf{2 N} \mathbf{N}_{\mathbf{0}}\right)}\right)$ or a multiple of them with coefficient 2^{n} or a simple power of 2. In particular, let us consider only the prime numbers that we will call $\mathrm{N}_{0 \mathrm{pm}}$ indicating by \mathbb{P} their set.

For the numbers $\mathrm{N}_{0 \mathrm{pm}}$ then the rows (combinations of classes) of the table]0, $\left.\mathrm{p}_{\max } \#\right]$ not deleted, according to combinatorial calculation, will result to be:
(4.2.1) $\prod_{p=3}^{p_{\text {max }}}(p-2)$
(4.2.1) thus provides us with the quantity of numbers M in the table that are incongruent and incompcongruent with $\mathrm{N}_{0 \text { pm }}$, while nothing can be said about their possible (non) congruence and/or (non) compcongruence with $\mathrm{N}_{0 \mathrm{pm}}$ with respect to the other modules p_{j} greater than $\mathrm{p}_{\max }$ and belonging to the set $\mathbb{P}(\sqrt{(\text { pmax\# })})$.

According then to the G Number Theorem (4.1.1) we can state that all numbers \mathbf{M} less than \mathbf{N}_{0} pm ($\mathbf{M G}$) are prisotto and prisopra to $\mathrm{N}_{0 \mathrm{pm}}$ and are therefore numbers G.

Remark 4.2.2 By the corollary (1.2.3) and remark 1.2.4 we also know, however, that such numbers $M_{G},\left(\right.$ prisotto and prisopra of $\left.N_{o p m}\right)$ do not include the possible n_{0} for which $\left(N_{o p m}-n_{0}\right)$ is equal to a pi belonging to the set $\mathbb{P}\left(\sqrt{\left(2 N_{0 p m}\right)}\right)$. Consequently, all numbers θ less than $N_{\text {opm }}$ are always greater than/equal to the numbers M_{G}.

The average density Dncncomp $\left._{10}, p_{\max } \#\right]$ of the numbers M existing in the interval $\left.] 0, \sqrt{\left(2 \mathrm{~N}_{0 \mathrm{pm}}\right)} \#\right]$ uncongruent with $\mathbf{N}_{\text {opm }}$ for only p-modulesi belonging to the set $\mathbb{P}\left(\sqrt{\left(2 \mathrm{~N}_{\text {opm }}\right)}\right)$, knowing that $\sqrt{\left(2 \mathrm{~N}_{\mathrm{opm}}\right)} \#=2 * 3 * \ldots . . .{ }^{*} \mathrm{p}_{\max }$, can be written:
(4.2.3) Dncncomp $_{] 0,} \sqrt{\left.2 N_{0 p m} \#\right]}=\frac{\prod_{p=3}^{p \max }(p-2)}{\prod_{p=2}^{p \max } p}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p}$
multiplying and dividing the second term of the same by ($\mathrm{p}-1$) we obtain:
(4.2.4) Dncncomp $_{\mathrm{jo}, \sqrt{\left.2 N_{0 p m} \#\right]}}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p} * \frac{(p-1)}{(p-1)}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-1)}{p} * \prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}=$ $\prod_{p=2}^{p \max } \frac{(p-1)}{p} * \prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}$

In the last member of (4.2.4) we have substituted for $\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-1)}{p}$ the term $\prod_{p=2}^{p \max } \frac{(p-1)}{p}$ which, as we know from (2.2.2), corresponds, for $\mathrm{N}_{0} \geq 121$, to the average density $D n c_{] 0, \sqrt{\left.2 N_{0 p m} \#\right]}}$ of the numbers M existing in the interval $\left.] 0, \sqrt{\left(2 \mathrm{~N}_{0 \mathrm{pm}}\right)} \#\right]$ not congruent with $\mathrm{N}_{\mathbf{0 p m}}$ for only the pmodules ${ }_{i}$ belonging to the set $\mathbb{P}\left(\sqrt{\left(2 N_{0 \mathrm{pm}}\right)}\right)$; in these last three formulae $\mathrm{p}_{\max }$ is obviously equal to the highest prime number less than the $\sqrt{\left(2 N_{0 \mathrm{pm}}\right)}$.
Let us then see if we can find a relationship between $\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}$ e $\prod_{p=2}^{p \max } \frac{(p-1)}{p}$ so that we can determine the value of Dncncomp $\left._{] 0, ~} \sqrt{2 N_{0 p m}} \#\right]$ as a function of $\left.D n c_{] 0, \sqrt{2 N_{0 p m}}} \#\right]$.

We can write:

where one can easily verify that the relationship between the term $\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)}$ and that $\prod_{p=2}^{p \max } \frac{(p-1)}{p}$ for $\mathrm{N}_{0 \mathrm{pm}}=127$ (the first "prime" following 121) takes on the value 0.6767578125 , for $\mathrm{N}_{0}=9006001$ the value 0.6601862196 and then, as N increases ${ }_{0}$ towards infinity, and thus extending the product over all prime numbers ≥ 3, tends rapidly to decrease towards the constant of the prime twins C_{2} that appears in the Hardy-Littlewood conjecture [(c)] on the distribution of prime twins:
$\Pi_{p \geq 3} \frac{p *(p-2)}{(p-1)^{2}}=\mathrm{C}_{2} \approx 0.6601611813846869573927812110014$ \qquad
We can therefore write:

$$
\begin{equation*}
\prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)} \approx 2 * \mathrm{C} * 2 \prod_{p=2}^{p \max } \frac{(p-1)}{p} \tag{4.2.6}
\end{equation*}
$$

which substituted in (4.2.4) gives us:

Dncncomp $_{10,} \sqrt{\left.2 N_{0 p m} \#\right]}=\prod_{p=2}^{p \max } \frac{(p-1)}{p} * \prod_{p=3}^{p \max } \frac{(p-2)}{(p-1)} \approx 2 * \mathrm{C} * 2\left(\prod_{p=2}^{p \max } \frac{(p-1)}{p}\right)^{2}$
whence:

In this relation Dncncomp $]_{0, \sqrt{2 N_{\text {opm }} \#} \#}$ to the square of $D n c_{] 0, \sqrt{2 N_{0 p m} \#} \#}$ the constant C_{2} changes little with the variation of N_{0} when this is equal to a prime number $\mathrm{N}_{0 \text { pm }}$. If we apply (4.2.7) to the interval] $0, \mathrm{~N}_{\text {opm }}$] it can be shown (Appendix B) that a negligible relative approximation of 0.1812 is made for $\mathrm{N}_{0 \mathrm{pm}}=127$, and rapidly decreasing for higher values of $\mathrm{N}_{0 \mathrm{pm}}$ (0.0404 for $\mathrm{N}_{0 \mathrm{pm}}=1277$). An
approximation which, incidentally, for low values of $\mathrm{N}_{\mathrm{opm}}$ is compensated for by the corresponding higher values of C_{2}.
It can therefore be written with good approximation:
(4.2.8) Dncncomp $\left._{\left[0, N_{0}\right]} * 2 * C \approx\left(D n c_{\left[0, N_{o p m}\right]}\right)\right)^{2}$

Regardless of the distribution law of (4.2.8), the full analogy existing (with N0 prime) between (3.3.7) and (3.3.8) concerning prime twins and (4.2.7) and (4.2.8) leads us to believe that Dncncomp $_{\left[0, N_{0}\right]}$ as well as Dncncomp $(P G)_{\left[0, N_{0}\right]}$ is surely greater than 1 (there being in each interval $\left.] 0, \mathrm{~N}_{0 \mathrm{pm}}\right]$ with $\mathrm{N}_{0 \mathrm{pm}} \geq 127$ well more than one pair of prime twins) and thus in line with Goldbach's conjecture.

Remark 4.2.9 In (4.2.8) as stated in Remarks (4.2.2) and (2.2.6) both Dncncomp(G) $)_{\text {(NOpm) }}$ and $D n c_{\left[0, N_{0 p m}\right]}$) do not include the possible n_{0} for which the $\left(N_{o p m}-n_{0}\right)$ are equal to the primes less than or equal to the $\sqrt{\left(2 N_{0 p m}\right)}$ but since this relation is always valid $\forall N_{0 p m} \in \mathbb{P}$ starting from $N_{o p m}=$ 127 (the first "prime" following 121) we can extend (4.2.8) to all prime numbers (except 2, 3, 5, 7, 11, 13) less than any $N_{o p m}$ greater than or equal to 127. In fact for $N_{o p m}=127$ (and thus $\sqrt{\left(2 N_{0 p m}\right)}=$ $\left.\sqrt{254}=15.93, p_{\max }=13\right)$, (4.2.8) applies to all the n_{0} prisotto and prisopra of $N_{o p m}$ which when subtracted from $N_{\text {opm }}$ result in primes between 14 and 127; for $N_{o p m}=131$ (and therefore $\sqrt{262}=$ 16.18, $p_{\max }=13$), (4.2.8) concerns primes between 14 and 131; for $N_{o p m}=137$ (and therefore $\sqrt{274}$ $=16.55, p_{\max }=13$), (4.2.8) still concerns primes between 14 and 137 ; for $N_{0} p_{m}=149$ (and thus $\sqrt{298}$ $\left.=17.26, p_{\max }=17\right)$, (4.2.8) still concerns primes between 18 and 149; and we can continue like this for all subsequent $N_{o p m}$.

But it can be verified, assuming $\mathrm{N}_{0 \mathrm{pm}}=127$ and thus $\mathrm{C}_{2}=0.6767$, that (4.2.8), with an approximation of about 14%, also holds if we take into account the primes $2,3,5,7,11,13$. In fact with $\mathrm{N}_{0 \mathrm{pm}}=127$ there are 31 primes and 9 numbers G whence (4.2.9) becomes:
$\frac{9}{127} \approx 2 * 0,6767 *\left(\frac{31}{127}\right)^{2}$
$0,07086 \approx 0,08063$
Obviously, as N increases $\mathrm{opm}_{\mathrm{pm}}$, subject to the validity of (4.2.8) for all primes greater than 13, the approximation decreases.
Ultimately $\forall \mathrm{N}_{0 \mathrm{pm}} \in \mathbb{P}$ e greater than or equal to 127 we can still consider (4.2.8) to be valid even for primes less than $\mathrm{N}_{0 \mathrm{pm}}$ and thus, substitute in it the density $\mathrm{DG}_{\mathrm{CNOpm}}$ of the numbers $G \leq \mathrm{N}_{0 \mathrm{pm}}$ instead of Dncncomp $_{\left[0, N_{0}\right]}$ and the density Dprimi $_{\left.0, N_{0 p m}\right]}$ of primes less than or equal to $N_{0 p m}$ in place of $D n c_{0, N_{0 p m}}$).
Consequently, the relation follows from (4.2.8):
$(4.2 .10) \mathrm{DG}_{(\text {(Nopm })} \approx 2 * \mathrm{C}_{2} *\left(\text { Dprimi }_{\left.\mathrm{j}_{\left.0, N_{0 p m}\right]}\right)}\right)^{2}$
Being then for the NPT Dprimi $_{\left.]_{\left.0, N_{0 p m}\right]}\right]}=\frac{1}{\log N_{0}}$ one can write:
(4.2.11) $\mathrm{D}_{\mathrm{G}_{(\text {Nop } m)}} \approx 2 * \mathrm{C}_{2} *\left(\frac{1}{\log N_{\mathrm{opm}}}\right)^{2}$

To calculate the number $\mathrm{MG}_{\text {(Nopm) }}$ of the numbers G smaller than $\mathrm{N}_{0 \mathrm{pm}}$ multiply both members of (4.2.11) by $\mathrm{N}_{0 \mathrm{pm}}$:
(4.2.12) $\mathrm{M}_{\mathrm{G}_{\text {(Nopm) })}}=\mathrm{D}_{\mathrm{G}_{\text {(Nopm })}} * N_{0 p m} \approx N_{0 p m} * 2 * \mathrm{C}_{2} *\left(\frac{1}{\log N_{\text {opm }}}\right)^{2}$

Appendix D gives an example of n_{0} prisotto and prisopra of $\mathrm{N}_{0 \mathrm{pm}}$ and the corresponding values of $D n c_{\left[0, N_{0 p m}\right]}$, Dncncomp $_{\left[0, N_{0]}\right]}$ and M_{G} verified and calculated.

It is emphasised that the relation (4.2.12) bears a close resemblance to Vinogradov's theorem ${ }^{1}$.
Remark 4.2.13 Since the expression $N *_{o p m}\left(\frac{1}{\log N_{o p m}}\right)^{2}$ for $N_{o p m}=127$ takes on a value approximately equal to 5 , which increases for $N_{\text {opm }}>12$ and, the product $2 * C_{2}$ is always greater than $1, M \epsilon_{(N o p m)}$ will always be greater than or equal to 1 . This is confirmed by the fact that with $N_{o p m}$ prime there will always be at least one number $G=0$.

It follows from (4.2.12) that for all prime numbers $\mathrm{N}_{0 \mathrm{pm}}$ the numbers equal to their doubles $\left(2 * \mathrm{~N}_{0 \text { pm }}\right.$) are always the sum of one or more pairs of primes.

For N_{0} other than $\mathrm{N}_{0 \mathrm{pm}}$ the Dncncomp $_{\mathrm{j} 0}, \sqrt{\left.2 N_{0} \#\right]}$ (4.2.3) is modified in the expression:
(4.2.14) Dncncomp ${ }_{\left.00, \sqrt{2 N_{0}} \#\right]}=\frac{1}{2} * \prod_{3 \leq p_{l} \leq p_{\max }} \frac{\left(p_{l}-2\right)}{p_{l}} * \prod_{3 \leq p_{j} \leq p_{\max }} \frac{\left(p_{j}-1\right)}{p_{j}}$
in which the first p_{j} belonging to $\mathbb{P}\left(\sqrt{\left(2 N_{0}\right)}\right)$ appear distinct in the p_{j} equal to the factors of N_{0} and in those p_{1} that are not (see section $\underline{4.2}$ (b) and (c)). But (4.2.14) can also be written like this:
(4.2.15) Dncncomp $_{\left.\mathrm{jo}, \sqrt{2 N_{0}} \#\right]}=\frac{1}{2} * \prod_{3 \leq p_{i} \leq p_{\max }} \frac{\left(p_{i}-2\right)}{p_{i}} * \prod_{3 \leq p_{j} \leq p_{\max }} \frac{\left(p_{j}-1\right)}{\left(p_{j}-2\right)}$

Knowing that the value of $p_{\text {max }}$ of (4.2.3) and (4.2.15) remains the same for each interval $] 0, \mathrm{~N}_{0}$] with N_{0} such that it results $p_{\max }<\sqrt{2 N_{0}}<p_{\max s u c c}$ where $p_{\max }$ is the highest prime less than $\sqrt{2 N_{0 p m}}$ e $p_{\text {max succ }}$ the first immediately following $p_{\text {max }}$, by comparing (4.2.15), where

[^0]Dncncomp $\left.p_{0,} p_{\max } \#\right]$ is relative to any N_{0} other than Nopm, and (4.2.3) relative to the first highest Nopm < No results:
(4.2.16) Dncncomp ${ }_{\mathrm{0} 0, \sqrt{\left.2 N_{0} \#\right]}}=$ Dncncomp $_{\mathrm{lo}}, \sqrt{\left.2 N_{0 p m} \#\right]}: \prod_{3 \leq p_{j} \leq p_{\max }} \frac{\left(p_{j}-1\right)}{\left(p_{j}-2\right)}$
where both densities refer to the same interval]0, $\left.\mathrm{p}_{\text {max }} \#\right]$ with $\mathrm{p} \#=\max \sqrt{2 N_{0}} \#=\sqrt{2 N_{0 p m}} \#$ but are of integers of the interval incongruous and incompcongruous with two different numbers: N_{0} and $\mathrm{N}_{\text {opm }}$

According to (4.2.7), (4.2.16) becomes:
(4.2.17) Dncncomp $]_{00} \sqrt{\left.2 N_{0} \#\right]}=2 * \mathrm{C}_{2} *\left(D n c_{\left.] 0, \sqrt{2 N_{0 p m}} \#\right]}\right) * 2 \prod_{3 \leq p_{j} \leq p_{\max }} \frac{\left(p_{j}-1\right)}{\left(p_{j}-2\right)}=$
$=2 * \mathrm{C}_{2} *\left(D n c_{] 0, \sqrt{2 N_{0}} \# 1}\right) * 2 \prod_{3 \leq p_{j} \leq p_{\max }} \frac{\left(p_{j}-1\right)}{\left(p_{j}-2\right)}$
being by hypothesis $\left(p_{\max }<\sqrt{2 N_{0}}<p_{\text {max succ }}\right.$ where $p_{\max }$ is the highest prime less than $\left.\sqrt{2 N_{0 p m}}\right) D n c_{j 0,} \sqrt{\left.2 N_{0 p m} \#\right]}=D n c_{j 0}, \sqrt{\left.2 N_{0} \#\right]}$.
Finally, since the term $\prod_{3 \leq p_{j} \leq p_{\max }} \frac{\left(p_{j}-1\right)}{\left(p_{j}-2\right)}>1$, (4.2.17) in turn becomes:
(4.2.18)

$$
\text { Dncncomp }{ }_{\mathrm{j} 0}, \sqrt{\left.2 N_{0} \#\right]}, ~>2 * \mathrm{C}_{2} *\left(D n c_{] 0,} \sqrt{2 N_{0} \#}\right)^{2}
$$

The inequality relation (4.2.18), similarly to the equality relation (4.2.7), following the same reasoning as in Appendix B, has a negligible relative approximation when referred to the interval]0, N]. 0
This allows us to apply (4.2.18) to the interval $] 0, \mathrm{~N}]_{0}$ in addition to the interval $\left.] 0, \sqrt{2 N_{0 p m}} \#\right]$ allowing us to write::
(4.2.19) Dncncomp $_{\left.j 0, N_{0}\right]} 2 * 2 * \mathrm{C}>\left(\text { Dnc }_{\left.j 0, N_{0}\right]}\right)^{2}$

However, on the basis of observation (4.2.9) we can assume that $\forall \mathrm{N}_{0} \in \mathrm{~N}$ greater than 121, (4.2.19) remains valid for all primes smaller than N_{0} and so we can substitute the density $\mathrm{D}(\mathrm{G})_{(\mathrm{N} 0)}$ of all numbers G smaller than N_{0} in place of $\operatorname{Dncncomp}_{\left.j 0, N_{0}\right]}$ e $D_{\text {primi }}^{\left.j 0, N_{0}\right]}$ al posto di $D n c_{\left.j 0, N_{0}\right]}$, by writing:
$(4.2 .20) \mathrm{D}(\mathrm{G})_{(\mathrm{N} 0)}>2 * \mathrm{C}_{2} *\left(\text { Drimi }_{\left.\mathrm{jo,} N_{0}\right]}\right)^{2}$
If we now apply the NPT and multiply both members of (4.2.20) by N_{0} we obtain the number $\mathrm{M}_{(\mathrm{No⿻}}$ of the numbers G smaller than N_{0} :
(4.2.21) $\mathrm{M}_{(\mathrm{CNO})}=\mathrm{D}(G)_{(\mathrm{N} 0)} * \mathrm{~N}_{0}>N_{0} * 2 * \mathrm{C}_{2} *\left(\frac{1}{\log N_{0}}\right)^{2}$
where $\mathrm{N} *_{0}\left(\frac{1}{\log N_{0}}\right)^{2}$ always takes a value greater than or equal to 1 for $\mathrm{N}_{0} \geq 2$. Consequently, since $2 * \mathrm{C}_{2}$ is also always greater than $1, \mathrm{Me}_{(\mathrm{NO})}$ will always be greater than or equal to 1 .

It therefore follows from (4.2.21) that even for all numbers $N{ }_{0} \neq \mathrm{N}_{0 \mathrm{pm}}$ the numbers G are always greater than or equal to 1 and thus there will always be at least one pair of primes ($\mathrm{N}_{0}-\boldsymbol{G}$ and $\mathrm{N}_{0}+$ G) whose sum is equal to $2 * \mathrm{~N}_{0}$ as predicted by Goldbach's conjecture.
For N_{0} less than 121 , Goldbach's conjecture is easily verifiable.

Preamble If we wish to apply (4.2.7) to the interval $\left.] 0, \mathrm{~N}_{0 \mathrm{pm}}\right]$ as well as to the interval $\left.] 0, \mathrm{p}_{\max } \#\right]$, with $\mathrm{p}_{\text {max }}$ equal to the first higher less than or equal to the $\sqrt{2 N_{0 p m}}$, we must take into account that while in the interval $\left.] 0, p_{\max } \#\right]$ both $D n c_{\left.] 0, \sqrt{2 N_{0 p m}} \#\right]}$ and Dncncomp ${ }^{\left.00, \sqrt{2 N_{0 p m}} \#\right]}$ are equal to the product of the factors ($\mathrm{p}-\mathrm{x}$)/p [where x is equal to 1 for $D n c_{] 0, \sqrt{\left.2 N_{0 p m} \#\right]}}$ and 2 for Dncncomp $]_{0, \sqrt{\left.2 N_{o p m} \#\right]}}$] and where p varies respectively between 2 and $\mathrm{p}_{\max }$ and between 3 and $\mathrm{p}_{\max }$, on the other hand in the interval $\left.] 0, N_{0 p m}\right]$, the two densities $D n c_{\left[0, N_{0 p m}\right]}$ e $\operatorname{Dncncomp}_{\left[0, N_{0 p m}\right]}$ are no longer equal to the product of the factors $(\mathrm{p}-\mathrm{x}) / \mathrm{p}$ since $\mathrm{N}_{0 \mathrm{pm}}$ unlike $\mathrm{p}_{\max } \#$ is not a multiple of any prime in the interval [$2, \mathrm{p}_{\max }$]. It can be shown, however, that the ratio of the density Dncncomp $^{\left.00, N_{0 p m}\right]}$ and the square of the density $D n c_{\left[0, N_{0 p m}\right]}$ relative to the interval $\left.] 0, N_{0 \mathrm{pm}}\right]$ is almost equal to that of (4.2.7) with a relative approximation of 0.1812 for $\mathrm{N}_{0 \mathrm{pm}}=127$ and rapidly decreasing for higher values (0.0404 for $\mathrm{N}_{\mathrm{opm}}=1277$).

To this end, we compute the individual densities for a single p_1 modulus $\mathcal{E}\left\{2,3,5 \ldots . .\right.$. . $\left.\mathrm{p}_{\max }\right\}$ of the integers in the interval $] 0, \mathrm{~N}_{0 \text { pm }}$] not congruent to $\mathrm{N}_{0 \mathrm{pm}}$ modulus $\mathrm{p} _1$ (for $\mathrm{x}=1$) and not congruent to $\mathrm{N}_{0 \text { pm }}$ modulus $\mathrm{p}_{-} 1$ (for $\mathrm{x}=2$). Since these densities in the interval $\left.] 0, \mathrm{~N}_{0 \mathrm{pm}}\right]$ are different from (p_1 $-\mathrm{x}) / \mathrm{p} _1$, in order to calculate them, for each $\mathrm{p}_{-} 1$ we divide the interval $\left.] 0, \mathrm{~N}_{0 \mathrm{pm}}\right]$ into two intervals $\left.] 0, X_{p_{_} 1}\right]$ and $\left.] X_{p_{-} 1}, N_{0 p m}\right]$ where $X_{p_{-} 1}$ is the maximum multiple of $p _1$ contained in the interval $] 0$, $\left.\mathrm{N}_{0 \mathrm{pm}}\right]$. We then compute the total densities of these numbers ($\mathrm{p} _1-\mathrm{x}$), non-congruent to $\mathrm{N}_{0 \text { pm }}$ modulo p_1 (for $\mathrm{x}=1$) and non-congruent to $\mathrm{N}_{0 \mathrm{pm}}$ modulo p_1 (for $\mathrm{x}=2$), present in the two intervals:

$$
\text { a) } \mathrm{D}\left(\mathrm{p}_{-} 1\right)=\frac{X_{p_{-} 1} * \frac{\left(p_{-1}-x\right)}{p_{-} 1}+\left(\left[N_{0 p m}\right]_{p_{-} 1}-f(h, x)\right)}{N_{0 p m}}=\frac{L *\left(p_{1}-x\right)+\left(\left[N_{0 p m}\right]_{p_{1}}-f(h, x)\right)}{N_{0 p m}}
$$

where L is equal to the ratio of the maximum multiple $X_{p_{-} 1}$ of $p_{-} 1$ contained in the interval $] 0, N_{0 \text { pm }}$] to $\mathrm{p}_{-} 1$, where [N$]_{\text {opmp_1 }}<\mathrm{p}_{-} 1$ is equal to the width of the interval] $\mathrm{X}_{\mathrm{p}_{-} 1}, \mathrm{~N}_{\text {opm }}$], where h is the number of integers in the interval] $\mathrm{X}_{\mathrm{p}_{1} 1}, \mathrm{~N}_{0 \mathrm{pm}}$] whose moduli $\mathrm{p}_{-} 1$, in the case of $\mathrm{x}=1$, is equal to the remainder of the division of $N_{0 p m}$ by $p_{-} 1$ and, in the case of $x=2$, are equal to the remainder or its complement of the division of $N_{0 p m}$ by $p_{-} 1$, and where finally $f(h, x)$ is a function of h and x that takes the values of 1 or 2 depending on the values of h and x. Since $N_{0 p m}$ is obviously a congruent number with itself h will be equal to 1 or 2 .

Knowing that $\left[\mathrm{N}_{0 \text { pm }}\right]$ p_1 can take on a value between 1 and $\mathrm{p} _1-1$ (the value 0 being excluded since both $\mathrm{N}_{\mathrm{opm}}$ and $\mathrm{p}_{-} 1$ are primes) and that $\mathrm{f}(\mathrm{h}, \mathrm{x})$, depending on the value of h and x , can be worth 1 or 2, we can state that the term ($[\mathrm{N}]_{0 \text { pmp_ }} 1-\mathrm{f}(\mathrm{h}, \mathrm{x})$), always choosing for the purpose of our demonstration the highest of the possible values, takes on a value according to the following scheme:
if $h=1$ for both $x=1$ and $\mathbf{x}=\mathbf{2}$ we have: $\left([N]_{0 p m p _1}-f(h, x)\right)=[N]_{\text {pmp_1 }}-1$

We can therefore write:
b) $\mathrm{L}=\frac{\left(N_{0 p m}-\left[N_{0} p m\right]_{p_{-}}\right)}{p_{-} 1}$
and (a):
c) $\mathrm{D}\left(\mathrm{p} _1\right)=\left\{\frac{\left(N_{0 p m}-\left[N_{0 p m}\right]_{p_{-} 1}\right)}{p_{-} 1} *\left(p_{-} 1-x\right)+\left(\left[N_{0 p m}\right]_{p_{-} 1}-\mathrm{f}(\mathrm{h}, \mathrm{x})\right)\right\} * \frac{1}{N_{0 p m}}$
and then multiplying and dividing the term $\left([\mathrm{N}]_{0 \text { opmp_1 }}-\mathrm{f}(\mathrm{h}, \mathrm{x})\right)$ by $\mathrm{p}_{-} 1$:
d) $\mathrm{D}\left(\mathrm{p}_{-} 1\right)=\frac{N_{0 p m} *\left(p_{-} 1-x\right)-\left[N_{0_{p p m}}\right]_{p_{-} 1} * p_{-} 1+\left[N_{0 p m}\right]_{p_{-} 1} * x+\left(\left[N_{0} p m\right]_{p_{-}-}-f(h, x)\right) * p_{-} 1}{N_{0_{p m}} * p_{-} 1}$
e) $\mathrm{D}\left(\mathrm{p}_{-} 1\right)=\frac{N_{0 p m} *\left(p_{-} 1-x\right)-\left[N_{0 p m}\right]_{p_{-} 1} * p_{-} 1+\left[N_{0 p m}\right]_{p_{-} 1} * x+\left[N_{0 p m}\right]_{p_{-}} * p_{-} 1-f(h, x) * p_{-} 1}{N_{0 p m} * p_{-} 1}$
f) $\mathrm{D}\left(\mathrm{p} _1\right)=\frac{N_{0 p m} *\left(p_{-} 1-x\right)+\left[N_{0 p m}\right]_{p_{-}-1} * x-f(h, x) * p_{-} 1}{N_{0 p m} * p_{-} 1}$
$\mathrm{g}) \mathrm{D}\left(\mathrm{p} _1\right)=1-\frac{N_{0 p m} * x}{N_{0 p m} * p_{-} 1}-\frac{f(h, x) * p_{1}-\left[N_{0 p m}\right]_{p_{-}} * x}{N_{0 p m} * p_{-} 1}$
Let us now see, based on the possible values of $h(1,2)$ and $x(1,2)$ what expression $g)$ takes on.
For $\mathrm{h}=1$ and $\mathrm{x}=1,2$ and thus $\mathrm{f}(\mathrm{h}, \mathrm{x})=1$ we have that:
h) $\mathrm{D}\left(\mathrm{p} _1\right)=1-\frac{x}{p_{-} 1}-\frac{p_{1}-\left[N_{0 p m}\right]_{p_{-}} * x}{N_{0 p m} * p_{-} 1}$

For $h=2$ and $x=2$ and thus $f(h, x)=2$ we have that:
i) $\mathrm{D}\left(\mathrm{p}_{-} 1\right)=1-\frac{x}{p_{-} 1}-\frac{2 p_{-} 1-\left[N_{0 p m}\right] p_{-1} * x}{N_{0 p m} * p_{-} 1}$

Definition We define $\mathrm{Dh}_{\text {NOpm }}$ the product of the respective individual densities denoted by h) (with $\mathrm{x}=1$) for each of the $\mathrm{p}_{-} 1$ less than or equal to $\mathrm{p}_{\max }$ and by $\mathrm{Di}_{\text {Nopm }}$ the product of the respective individual densities denoted by i) (with $\mathrm{x}=2$) for each of the $\mathrm{p} _1$ less than or equal to $\mathrm{p}_{\max }$ (with $\mathrm{p}_{\max }$ equal to the first highest less than or equal to the $\sqrt{2 N_{0 p m}}$).

Lemma (a) The relative approximation $a_{r t}$ between the ratio $D i_{N 0 p m} / D h_{N 0 p m}{ }^{2}$ and that $\left(\right.$ Dnncompc $\left._{\left.] 0, \sqrt{2 N_{0 p m} \#}\right]}\right) /\left(D n c_{] 0, \sqrt{\left.2 N_{0 p m} \#\right]}}\right)^{2}$ is equal to:
t) $a_{r t}=\frac{4 * \sqrt{2}}{\sqrt{\text { Nopm }} * \ln \sqrt{2 \text { Nopm }}}$

We begin by calculating the approximation of the $D \mathrm{~h}_{\mathrm{Nopm}}$ with respect to the $D n c_{] 0, \sqrt{\left.2 N_{0 p m} \#\right]}}$ and of $D i_{\text {N0pm }}$ with respect to the $\operatorname{Dncncomp}_{j 0, \sqrt{2 N_{0 p m} \#} \#}$. In the expressions (h) and (i) the first two terms of the second member represent the individual densities ($p _1-1$)/p_1 that the $\left.\left.n €\right] 0, p_{\max } \#\right]$ are either non-congruent with $\mathrm{N}_{0 \text { pm }}$ modulo p_1 (with $\mathrm{x}=1$) or non-congruent with $\mathrm{N}_{0 \text { pm }}$ modulo p_1 (with $\mathrm{x}=2$) in the interval $\left.] 0, \mathrm{p}_{\max } \#\right]$. The last term of the second member then represents the approximation that the single density $D\left(p _1\right)$ has to the single density ($p _1-1$)/p_1 in the interval $] 0$, $\left.\mathrm{N}_{0 \mathrm{pm}}\right]$. For the purposes of our demonstration, we must consider in expressions h) and i) among 21
the various possible values of $\left[N_{0 p m}\right]_{p_{-} 1}$ the one with the largest approximation in order to verify that it does not compromise the final result of the demonstration. Let us then refer to a single expression of $D\left(p _1\right)$ and calculate its relative approximation:
j) $\quad \mathrm{D}\left(\mathrm{p}_{-} 1\right)=\frac{p_{-1}-x}{p_{-} 1}-\frac{x * p_{1}-\left[N_{0 p m}\right]_{p_{-} 1} * x}{N_{0 p m} * p_{-} 1}$
with relative approximation $a_{r}=\frac{x * p_{-} 1-\left[N_{0 p m}\right]_{p_{-}} * x}{N_{0 p m} * p_{-} 1} * \frac{p_{-1}}{p_{-} 1-x}$
(j) for $\mathbf{x}=\mathbf{1}$ becomes:
k) $\mathrm{D}_{1}\left(\mathrm{p}_{-} 1\right)=1-\frac{1}{p_{-} 1}-\frac{p_{-} 1-\left[N_{0 p m}\right] p_{-} 1}{N_{0 p m} * p_{-} 1}$
which, assuming $\left[N_{0 p m}\right]_{p_{-} 1}=1$ again to choose the maximum approximation, becomes:

1) $\mathrm{D}_{1}\left(\mathrm{p}_{-} 1\right)=1-\frac{1}{p_{-} 1}-\frac{1}{N_{0 p m}} * \frac{p_{p_{-}-1}}{p_{-} 1}=\frac{p_{-}-1}{p_{-} 1}-\frac{1}{N_{0 p m}} * \frac{p_{p_{-} 1}-1}{p_{-} 1}$
with relative approximation $a_{r}=\frac{1}{N_{0 p m}} * \frac{p_{p_{-}-1}}{p_{-} 1} * \frac{p_{-}}{p_{-} 1-1}=\frac{1}{N_{0 p m}}$
and instead for $\mathbf{x}=\mathbf{2}$ it becomes:
m) $\mathrm{D}_{2}\left(\mathrm{p} _1\right)=\frac{p_{-}-2}{p_{-} 1}-\frac{2}{N_{0 p m}} * \frac{p_{-} 1-2}{p_{-} 1}$
with relative approximation $a_{r}=\frac{2}{N_{0 p m}} * \frac{p_{-} 1-2}{p_{-} 1} * \frac{p_{-1}}{p_{-} 1-2}=\frac{2}{N_{0 p m}}$

We have already defined products $D h_{N 0 p m}$ e $D i_{N o p m}$ as:
n) $D h_{\text {Nopm }}:=\prod_{p i=2}^{p_{\max }} D_{1}\left(p_{i}\right)$
e $D i_{\text {NOpm }}:=\frac{1}{2} * \prod_{p i=3}^{p_{\max }} D_{2}\left(p_{i}\right)$
from which it follows that the relationship between $D i_{N 0 p m}$ and the square of $D h_{N 0 p m}$ is equal to:
o) $\frac{D i_{N 0 p m}}{D h_{N 0 p m}{ }^{2}}=\frac{\frac{1}{2} * \prod_{p=3}^{p \max } D_{2}\left(p_{i}\right)}{\left(\prod_{p=2}^{p_{\max }} D_{1}\left(p_{i}\right)\right)^{2}}$

As in the case of expressions h) and i), also in the case of expressions l) and m) the first terms of the second member represent the densities ($p_{-} 1-1$)/ $p_{-} 1$ and ($p _1-2$)/ $p_{-} 1$ that the generic number $\mathrm{n} €$ $\left.] 0, \mathrm{p}_{\max } \#\right]$ is either non-congruent with $\mathrm{N}_{0 \text { pm }}$ modulo $\mathrm{p}_{-} 1$ (with $\mathrm{x}=1$) or non-congruent with $\mathrm{N}_{0 \text { pm }}$ modulo $p_{-} 1$ (with $x=2$). The last terms of the second member of the expressions 1) and m) then represent the approximations that the densities $\mathrm{D}_{1}\left(\mathrm{p} _1\right)$ and $\mathrm{D}_{2}\left(\mathrm{p} _1\right)$ in the interval $] 0, \mathrm{~N}_{0 \mathrm{pm}}$] have with respect to those ($p _1-1$)/ $p_{-} 1$ and ($p _1-2$)/ $p _1$ relative to the interval $\left.] 0, p_{\max } \#\right]$).

Taking the expressions (2.2.2) and (4.2.3) from the text relating to the densities of the integers in the interval $\left.] 0, p_{\max } \#\right]$ respectively incongruous and incompcongruous with $\mathrm{N}_{0 \mathrm{pm}}$ modules $\mathrm{p}_{\mathrm{i}} \leq \mathrm{p}_{\max }$:

$$
\text { p) } D n c_{\left[0, \sqrt{2 N_{0 p m}} \#\right]}=\prod_{p=2}^{p_{\max }} \frac{(p-1)}{p} \quad \text { and q) } \text { Dncncomp }_{\left[0, \sqrt{\left.2 N_{0 p m} \#\right]}\right.}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p}
$$

we see that they are respectively the product of the first terms of $D_{1}\left(p_{-} 1\right)$ and $D_{2}\left(p _1\right)$ for as many $\mathrm{p}_{-} 1\left(p_{i}\right)$ less than or equal to $\mathrm{p}_{\max }$ for $\mathrm{x}=1$ and $\mathrm{x}=2$ respectively. The relative approximation of the expressions n) to those p) and q), similarly to the error propagation, will be equal to the sum of the relative approximations of the individual terms $\left(p_{i}-x\right) / p_{i}$.

This means that for the expressions n) and o) there is a relative approximation a_{r} equal to $\frac{x}{N_{0 p m}} *$ $\sum_{p_{i} \leq p_{\max }} p_{i}{ }^{0}$ which, for the NPT and knowing that $\mathrm{p}_{\max }$ is the highest prime less than or equal to the $\sqrt{2 N_{0 p m}}$, becomes:

$$
r) a_{r}=\frac{x}{\text { Nopm }} * \frac{\sqrt{2 \text { Nopm }}}{\ln \sqrt{2 \text { Nopm }}}=\frac{x * \sqrt{2}}{\sqrt{\text { Nopm }} * \ln \sqrt{2 \text { Nopm }}}
$$

Relative approximation therefore that for $\mathrm{N}_{0 \mathrm{pm}}=127$ is equal to: $0.0453^{*} \mathrm{x}$ while for $\mathrm{N}_{0 \mathrm{pm}}=1277$ is equal to: $0.0101{ }^{*} \mathrm{x}$ and continues to decrease for increasing values of $\mathrm{N}_{0 \mathrm{pm}}$.

From the expressions (p) and (q), it was derived in the text that the ratio between the density of the integers present in the interval $\left.] 0, \mathrm{p}_{\max } \#\right]$ incongruous and incompcongruous with $\mathrm{N}_{\text {opm }}$ modules $\mathrm{p}_{\mathrm{i}} \leq$ $\mathrm{p}_{\max }$ and the square of the density of the integers present in the interval $\left.] 0, \mathrm{p}_{\max } \#\right]$ incongruous with $\mathrm{N}_{\text {opm }}$ modules $\mathrm{p}_{\mathrm{i}} \leq \mathrm{p}_{\max }$ is equal to

$$
s)_{D_{10,}{ }_{10, \sqrt{2 N_{0 p m}^{\#} \#}}{ }^{2}}^{D^{2 N_{0 p m}^{\#]}}}=\frac{\frac{1}{2} * \prod_{p=3}^{p \max \frac{(p-2)}{p}}}{\left(\prod_{p=2}^{p_{\max }} \frac{(p-1)}{p}\right)^{2}}
$$

while the expressions n) showed that the ratio o) in the interval $] 0, N_{0 p m}$] with respect to the ratio s) presents a relative approximation equal to the sum of the relative approximations of the terms present at the numerator and denominator; the term at the denominator presents an approximation double that indicated in r) and relative, with $\mathrm{x}=1$, to the term $\prod_{p=2}^{p_{\max }} \frac{(p-1)}{p}$ while the term at the numerator has an approximation indicated in r) and relative, with $\mathrm{x}=2$, to the term $\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p}$.
Thus, the relative approximation of the ratio o) to that s), when instead of considering the interval $] 0$, $\left.p_{\max } \#\right]$ one considers that $] 0, \mathrm{~N}_{\mathrm{opm}}$], is equal to:

$$
\text { t) } a_{r t}=\frac{2 * \sqrt{2}}{\sqrt{\text { Nopm }} * \ln \sqrt{2 \mathrm{Nopm}}}+2 * \frac{\sqrt{2}}{\sqrt{\text { Nopm }} * \ln \sqrt{2 \mathrm{Nopm}}}=\frac{4 * \sqrt{2}}{\sqrt{\text { Nopm }} * \ln \sqrt{2 \mathrm{Nopm}}}
$$

so for $\mathrm{N}_{0 \mathrm{pm}}=127 a_{r t}=0.1812$, for $\mathrm{N}_{0}=1277 a_{r t}=0.0404$ and for N_{0} increasing $a_{r t}$ continues to decrease.

So for the purposes of the demonstration, it can be written that the ratio of (4.2.8) in the text, in the worst case (i.e. to the highest approximation) is:

v) $\frac{D i_{\text {Nopm }}}{D h_{\text {Nopm }}{ }^{2}} \approx 2 * \mathrm{C} 2 *\left(1-a_{r t}\right) \approx 1,32 *\left(1-a_{r t}\right)$
and consequently for $\mathrm{N}_{0}=127$ ed $a_{r t}=0.1812$ can be written:

$$
\text { w) } \frac{D i_{N 0 p m}}{D h_{N 0 p m}^{2}} \approx 2 * \mathrm{C} 2 *\left(1-a_{r t}\right) \approx 1,32 * 0,8188 \approx 1,0808
$$

and for $\mathrm{N}_{0}=1277$ ed $a_{r t}=0,0404$:

$$
x) \frac{D i_{N 0 p m}}{D h_{N 0 p m}{ }^{2}} \approx 2 * \mathrm{C} 2 *\left(1-a_{r t}\right) \approx 1,32 * 0,9596 \approx 1,2666
$$

and for N_{0} increasing, the ratio tends to 1.32.

Now in the interval $] 0, \mathrm{~N}_{0 \mathrm{pm}}$] analogous to the calculation of the $D n c_{\left[0, N_{0 p m}\right]}$, the product $D h_{N 0 p m}$ of the respective individual densities denoted by h) (with $\mathrm{x}=1$) for each $\mathrm{p}_{-} 1$ less than or equal to $\mathrm{p}_{\max }$ approximates (Appendix E) without equating the correct density $D n c_{\left.] 0, N_{0 p m}\right]}$ of the uncongruent integers with $\mathrm{N}_{0 \mathrm{pm}}$ modulo $\mathrm{p}_{-} 1$ for each $\mathrm{p}_{-} 1 \varepsilon\left\{2,3,5 \ldots \ldots . \mathrm{p}_{\max }\right\}$ (with $\mathrm{p}_{\max }$ highest prime less than or equal to $\left.\sqrt{2 N_{0 p m}}\right)$. In the following lemmas we will prove that $\boldsymbol{D n c} \boldsymbol{c}_{\left.\mathbf{0}, N_{0 p m}\right]}$ e $\boldsymbol{D} \boldsymbol{h}_{\boldsymbol{N 0 p m}}$ are almost asymptotically equivalent with a small relative error (equal to $2 * \mathrm{e}^{-\gamma}$) so that it is all internal to the approximation $"$ " " of (4.2.8).

Similarly in the same interval $\left.] 0, \mathrm{~N}_{0 \mathrm{pm}}\right], \mathrm{N}_{0 \mathrm{pm}}$ being prime and therefore not a multiple of any number in the above interval, the product $D i_{N 0 p m}$ of the respective individual densities indicated by (i) (with $\mathrm{x}=2$) for each of the $\mathrm{p}_{-} 1$ less than or equal to $\mathrm{p}_{\max }$ approximates (Appendix E) without equalling the density Dncncomp $_{\left[0, N_{0 p m}\right]}$ of the uncongruent integers with $\mathrm{N}_{0 \mathrm{pm}}$ modulo p_1 for each p_1 $\varepsilon\{2,3$, 5......., $\left.\mathrm{p}_{\max }\right\}$ (with $\mathrm{p}_{\max }$ highest prime less than or equal to $\sqrt{2 N_{0 p m}}$). And in fact, in the following lemmas we shall prove that $\mathrm{Di}_{\mathrm{NOpm}}$ is almost asymptotically equivalent to Dncncomp ${ }_{\left[0, \mathrm{~N}_{\mathrm{opm}}\right]}$.

Ultimately then we can write that:

$$
\text { y) } \frac{\text { Dncncomp }_{\left[0, N_{0 p m}\right]}}{D n c_{\left[0, N_{0 p m}\right]^{2}}} \approx \frac{D i_{\text {Nopm }}}{D h_{N o p m}{ }^{2}} \approx 2 * \mathrm{C} 2 *\left(1-a_{r t}\right) \approx 1,32 *\left(1-a_{r t}\right)^{\prime}
$$

Observation (x) implies that the ratio $\frac{D i_{N O p m}}{D h_{N o p m}{ }^{2}}$ tends to a constant, thus $D i_{N O p m}$ e $D h_{N O p m}{ }^{2}$ are almost asymptotically equivalent, which will also be demonstrated in a different way in lemma c).

Lemma (b) The product $D h_{N 0 p m}$ and the density $D n c_{\left[0, N_{0 p m}\right]}$ of integers in the interval]0, Nopm] incongruous with Nopm are asymptotically nearly equivalent functions (with a relative error of $2 * e^{-\gamma}$).

First of all, we can say that according to the NPT the density $\mathrm{Dnc}_{\left.j 0, \mathrm{~N}_{0 \mathrm{pm}}\right]}$ of incongruous numbers with $\mathrm{N}_{0 \text { pm }}$ modulo p_1 for each $\mathrm{p} _1 \varepsilon\left\{2,3,5 \ldots . .\right.$. , $\left.\mathrm{p}_{\max }\right\}$ (with $\mathrm{p}_{\max }$ highest prime less than or equal to the $\sqrt{2 \mathrm{~N}_{0 \text { pm }}}$) in the interval $] 0, \mathrm{~N}_{0 \mathrm{pm}}$] is given, see also (2.2.5) in the text, by the difference
between the primes contained in the interval $\left.] 0, \mathrm{~N}_{0 \mathrm{pm}}\right]$ and those contained in the interval $] 0$, $\left.\sqrt{2 \mathrm{~N}_{0 \mathrm{pm}}}\right]$ divided by $\mathrm{N}_{\mathrm{opm}}$ and i.e. by:
$\operatorname{Dnc}_{\left.\mathrm{OO}, \mathrm{N}_{\mathrm{opm}}\right]}=\frac{\left(\frac{\mathrm{N}_{\mathrm{opm}}}{\operatorname{logNopm}}-\frac{\sqrt{{ }^{2 \mathrm{~N}_{\mathrm{opm}}}}}{\log \sqrt{{ }_{2 \mathrm{~N}_{\mathrm{opm}}}}}\right)}{\mathrm{Nopm}} \approx \frac{1}{\log \mathrm{~N}_{\mathrm{opm}}} *\left(1-\frac{2 \sqrt{2}}{\sqrt{\mathrm{~N}_{\mathrm{opm}}}}\right)$
although, especially for low values of $\mathrm{N}_{0 \mathrm{pm}}$, this value is much less accurate than the product $\mathrm{Dh}_{\mathrm{NOpm}}$ of the individual densities indicated by h).

Now to prove the asymptotic quasi-equivalence between the product $\mathrm{Dh}_{\mathrm{Nopm}}$ and the density $\mathrm{Dnc}_{\left[0, \mathrm{~N}_{\mathrm{opm}}\right]}$ we calculate the limit for $\mathrm{N}_{\mathrm{opm}} \rightarrow \infty$ of the ratio between the density $\mathrm{Dh}_{\text {N } 0 \text { pm }}$ and that $\operatorname{Dnc}_{\left.j 0, \mathrm{~N}_{\mathrm{opm}}\right]}$:

$$
\lim _{N_{0 p m} \rightarrow \infty} \frac{\prod_{p=2}^{p_{m a x}}\left(1-\frac{1}{p}-\frac{p-\left[N_{0 p m}\right]_{p}}{N_{0 p m} * p}\right)}{\frac{1}{\log N_{0 p m}} *\left(1-\frac{2 \sqrt{2}}{\sqrt{N_{0 p m}}}\right)}=\frac{\lim _{N_{0 p m} \rightarrow \infty} \prod_{p=2}^{p_{\max }}\left(1-\frac{1}{p}-\frac{p-\left[N_{0 p m}\right]_{p}}{N_{0 p m} * p}\right)}{\lim _{N_{0 p m} \rightarrow \infty} \frac{1}{\log N_{0 p m}} *\left(1-\frac{2 \sqrt{2}}{\sqrt{N_{0 p m}}}\right)}=\frac{\lim _{0 p m \rightarrow \infty}}{\prod_{p=2}^{p_{m a x}}\left(1-\frac{1}{p}-\frac{p-\left[N_{0 p m}\right]_{p}}{N_{0 p m * p}}\right)} \lim _{N_{0 p m} \rightarrow \infty} \frac{1}{\log N_{0 p m}} *\left(1-\frac{2 \sqrt{2}}{\sqrt{N_{0 p m}}}\right)
$$

$$
=\lim _{\mathrm{N}_{\mathrm{opm}} \rightarrow \infty} \frac{\Pi_{\mathrm{p} \leq \sqrt{2 * \mathrm{~N}_{\mathrm{opm}}}} \frac{(\mathrm{p}-1)}{\mathrm{p}}}{\frac{1}{2 * \log \sqrt{2 * \mathrm{~N}_{\mathrm{opm}}}}}=2 * \lim _{\mathrm{Nopm}_{\mathrm{op}} \rightarrow \infty} \log \sqrt{2 * \mathrm{~N}_{0 \mathrm{pm}}} * \prod_{\mathrm{p} \leq \sqrt{2 * \mathrm{~N}_{\mathrm{opm}}}} \frac{(\mathrm{p}-1)}{\mathrm{p}}=2 * \mathrm{e}^{-\gamma}=1,122 \cong 1
$$

knowing that by Merten's third theorem the limit $\lim _{\mathrm{N}_{\mathrm{opm} \rightarrow \infty}} \log \sqrt{2 * \mathrm{~N}_{0 \mathrm{pm}}} * \prod_{\mathrm{p} \leq \sqrt{2 * \mathrm{~N}_{\mathrm{opm}}}} \frac{(\mathrm{p}-1)}{\mathrm{p}}$ is equal to $\mathrm{e}^{-\gamma}$ with γ Euler-Mascheroni constant equal to 0.57721

For the purposes of demonstration, this relationship, although weaker than asymptotic equivalence, allows us to pose $\mathrm{Dh}_{\mathrm{Nopm}} \approx \mathrm{Dnc}_{\left.j 0, \mathrm{~N}_{\mathrm{opm}}\right]}$.

Lemma (c) The product $D i_{N 0 p m}$ and the square of $D h_{N 0 p m}$ are asymptotically almost equivalent functions (with a relative error of $2 * \mathrm{C}_{2}$).

To prove the asymptotic quasi-equivalence between the product $\mathrm{Di}_{\mathrm{NOpm}}$ and the square of the density $\mathrm{Dh}_{\text {NOpm }}$ we calculate the limit for $\mathrm{N}_{0 \mathrm{pm}} \rightarrow \infty$ of the ratio between the density $\mathrm{Di}_{\mathrm{NOpm}}$ and the square of the density $\mathrm{Dh}_{\mathrm{NOpm}}$: $\lim _{N_{0 p m} \rightarrow \infty} \frac{\frac{1}{2} \prod_{p=3}^{p_{\max }}\left(1-\frac{2}{p}-\frac{2 *\left(p-\left[N_{0 p m}\right]_{p}\right)}{N_{0 p m} * p}\right)}{\prod_{p=2}^{p_{\max }}\left(1-\frac{1}{p}-\frac{p-\left[N_{0 p m}\right]_{p}}{N_{0 p m} * p}\right)^{2}}=\frac{\lim _{N_{0 p m} \rightarrow \infty} \frac{1}{2} \prod_{p=3}^{p_{\max }}\left(1-\frac{2}{p}-\frac{2 *\left(p-\left[N_{0 p m}\right]_{p}\right)}{N_{0 p m} * p}\right)}{\lim _{N_{0 p m} \rightarrow \infty} \prod_{p=2}^{p_{\max }}\left(1-\frac{1}{p}-\frac{p-\left[N_{0 p m}\right]_{p}}{N_{0 p m}}\right) *\left(1-\frac{1}{p}-\frac{p-\left[N_{0 p m}\right]_{p}}{N_{0 p m}}\right)}=$

$\left(\frac{\mathrm{p}}{\mathrm{p}-1}\right)^{2}=2 * \lim _{\mathrm{N}_{\mathrm{p} \mathrm{p} m \rightarrow \infty}} \prod_{\mathrm{p}=3}^{\mathrm{p}_{\max }}\left(\frac{\mathrm{p}(\mathrm{p}-2)}{(\mathrm{p}-1)^{2}}\right) \approx 2 * \mathrm{C}_{2} \approx 1,32$

For the purposes of demonstration, this relationship, although weaker than the asymptotic equivalence, allows us to pose from here on $\mathrm{Di}_{\mathrm{N} 0 \mathrm{pm}} \approx \mathrm{Dh}_{\mathrm{N} 0 \mathrm{pm}}{ }^{2}$.

Lemma (d) We prove that $\mathrm{Di}_{\mathrm{NOpm}}$ e Dncncomp $\mathrm{DO}_{\mathrm{o}} \mathrm{N}_{\mathrm{opm}]}$ are asymptotically equivalent.
Being:

1) $\lim _{\mathrm{N}_{\mathrm{opm} \rightarrow \infty}} \frac{\mathrm{Dh}_{\mathrm{Nopm}}}{\mathrm{Dnc}_{\left.\mathrm{lo,}, \mathrm{~N}_{\text {opm }}\right]}} \approx 2 * \mathrm{e}^{-\gamma}$
(Lemma b)
2) $\lim _{\mathrm{N}_{\mathrm{opm} \rightarrow \infty}} \frac{\mathrm{Di}_{\mathrm{Nopm}}}{\left(\mathrm{Dh}_{\mathrm{NOpm}}\right)^{2}} \approx 2 * \mathrm{C}_{2}$
(Lemma c)
based on points 1) and 2) we can write that:

$$
\begin{aligned}
& \approx 2 * \mathrm{C}_{2} *\left(2 \mathrm{e}^{-\gamma}\right)^{2} \approx 1,66
\end{aligned}
$$

and thanks to (1) and (u) we can write:

Ultimately then based on the fact that:

- $D i_{N 0 p m}$ approximates without equalling the density Dncncomp $_{\left[0, N_{0 p m}\right]}$ (Lemma a)
- $\mathrm{Di}_{\text {NOpm }} \mathrm{e}\left(\mathrm{Dnc}_{\mathrm{jo,} \mathrm{~N}_{\mathrm{opm}} \mathrm{J}}\right)^{2}$ are asymptotically almost equivalent (formula 3)

we could deduce that $\mathrm{Di}_{\mathrm{N} 0 \mathrm{pm}} \approx \mathrm{Dncncomp}_{\left.\mathrm{Jo}, \mathrm{N}_{\mathrm{opm}}\right]}$ but this remains an open point.
Ultimately [see w) and x)] the ratio $\frac{D i_{N o p m}}{D h_{N o p m}{ }^{2}} \approx \frac{D n c n c o m p}{]_{\left.0, N_{0 p m}\right]}}{ }_{D n c_{\left.0, N_{0 p m}\right]}{ }^{2}}$ is always greater than 1 and therefore (4.2.8) and (4.2.19) of the text are proved by substituting the value $2 * \mathrm{C}_{2}$ for that $2 * \mathrm{C}_{2} *(1-$ $a_{r t}$).

APPENDIX C

Wanting to give a numerical example, let us set the first $\mathrm{M}=41$ and for ease of exposition, let us indicate the interval $] 0, \mathrm{M}]=] 0,41]$ in the manner shown below where they are tiled:

- right the numbers n_{0} prisotto of $\mathrm{M}=41$
- on the left the numbers n_{0} of which 1 is incongruous (nc1) and incompcongruous (ncomp1)
placed in the row respectively with the numbers in the range $] 0,41$] having those characteristics

5	first	5	first minors
4	minors of	4	36
3	$\operatorname{Rad}(M)$	3	$\operatorname{Rad}(M)$
2		2	37
1		1	38
0		0	39

In the table there are $10 n_{0}$ prisotto of $\mathrm{M}(\mathrm{NC}), 10 \mathrm{n}_{0}$ of which 1 is not congruous (nc 1), $10 \mathrm{n}_{0}$ of which 1 is not compcongruous (ncomp1) and $3 n_{0}$ of which 1 is not congruous and is not compcongruous (PG) for which $\mathrm{n}_{0}+1$ and $\mathrm{n}_{0}-1$ are primes.
It is easily verified from the table that the verified density $\left(D n c_{] 0, M] \text { ver }}\right)^{2}=10 / 41=0.2439$;
Dncncomp $(P G)($ ver $)=3 / 41=0.0731 ; P G($ ver $)=3$.
On the other hand, it follows from the NPT and (3.3.8) that:

- the calculated density $D n c_{], M] \text { calc }}=(M / \operatorname{InM}-\operatorname{Rad}(M) / \ln \operatorname{Rad}(M)) / \mathrm{M}=\left[1-(2 / \operatorname{Rad}(\mathrm{M})]^{*}(1 / \ln M)=\right.$ [1-(2/Rad(41)]* $1 / \ln 41=0.1851$ (to the nearest 24.10%)
- Dncncomp $(\mathrm{PG})(\mathrm{calc})=1.32 * .\left(D n c_{[0, M] \text { calc }}\right)^{2}=0.0452$ (to the nearest 38.16%)
- $\operatorname{PG}($ calc $)=41^{*}$ Dncncomp $(\mathrm{PG})($ calc $)=1$ (to the nearest $\left.66 \%\right)$

But with $\mathrm{M} \geq 53$ (first prime greater than 49), the values of the above quantities change along with their approximations as shown in the example table:

M	$\mathrm{Dnc}_{0, \mathrm{M} \text {] } \mathrm{l} \text { er }}$	$\mathrm{Dnc}_{\text {lo,M } \text { latal }}$	$\underset{\%}{\text { Appr. }}$	$\begin{gathered} \text { Dnencomp(PG) } \\ \text { (ver) } \end{gathered}$	$\begin{gathered} \text { Dnencomp(PG) } \\ (\text { calc }) \end{gathered}$	$\underset{\%}{\text { Appr. }}$	$\begin{gathered} \hline \text { PG } \\ \text { (ver) } \end{gathered}$	$\begin{gathered} \text { PG } \\ \text { (calc) } \end{gathered}$	$\underset{\%}{\text { Appr. }}$
53	0,226	0,182	19,32	0.0754	0,0440	41,63)	,	50,0
20047	0,111	0,995	10,65	0,0163	0,0130	20,09	328	262	20,0
40009	0,103	0,093	10,11	0,0143	0,0115	19,56	573	460	19,72

APPENDIX D

Wanting to give a numerical example, let us assume the first $\mathrm{M}=41$ and for ease of exposition, let us indicate the interval $] 0,2 \mathrm{M}]=] 0,82$] in the manner shown below where they are tiled:

- Odd numbers between 0 and 82 as, apart from 2, there are only prime numbers among them
- The numbers n_{0} prisotto (nc) and prisopra (ncomp) of the interval $] 0,41$] placed in a row with the prime numbers of the interval $] 0,41]$ and with the prime numbers of the interval [41, 82], respectively.

In the table, there are $9 n_{0}$ prisotto (nc) of M, $10 n_{0}$ prisopra (ncomp) of M and $4 n_{0}$ prisotto and prisopra (M_{G}) of M for which $41+\mathrm{n}$ and ${ }_{0} 41-\mathrm{n}_{0}$ are primes.
It is easily verified from the table that the verified density $D n c_{] 0, M] \text { ver }}=9 / 41=0.2195$;
Dnencomp $\left(\mathrm{M}_{\mathrm{G}}\right)($ ver $)=4 / 41=0.0975 ; \mathrm{M}_{\mathrm{G}}(\mathrm{ver})=4$.
On the other hand, it follows from the NPT and (4.2.8) that:

- The calculated density $D n c_{j 0, M] \text { calc }}=(\mathrm{M} / \operatorname{lnM}-\operatorname{Rad}(2 \mathrm{M}) / \operatorname{lnRad}(2 \mathrm{M})) / \mathrm{M}=[1-$ $(2 * \operatorname{Rad}(2) / \operatorname{Rad}(\mathrm{M})]^{*}(1 / \operatorname{lnM})=\left[1-(2 * \operatorname{Rad}(2) / \operatorname{Rad}(41)]^{*} 1 / \ln 41=0.1502\right.$ (to the nearest 31.57 \%)
- $\operatorname{Dncncomp}\left(\mathrm{M}_{\mathrm{G}}\right)($ calc $)=1.32 *\left(D n c_{] 0, M] \text { calc }}\right)^{2}=0.0297$ (to the nearest 69.53%)
- $\mathrm{M}_{\mathrm{G}}($ calc $)=41^{*} \operatorname{Dncncomp}\left(\mathrm{M}_{\mathrm{G}}\right)($ calc $)=1$ (to the nearest $\left.75 \%\right)$

But with $\mathrm{M} \geq 127$ (first prime greater than 121), the values of the above quantities change along with their approximations as shown in the example table:

м		Dnc $\mathrm{c}_{10, \mathrm{M} \text { calc }}$	$\begin{gathered} \text { Appr. } \\ \underset{\sim}{*} \end{gathered}$	$\underset{(\text { ver })}{\text { Dncncomp }(M)_{G}}$	$\underset{(\text { calc })}{\text { Dncncomp } \left.^{(M)}\right)_{\mathrm{G}}}$	$\underset{\%}{\text { Appr }}$	$\begin{gathered} \mathbf{M}_{\mathbf{G}} \\ \text { (ver) } \end{gathered}$	$\begin{gathered} \mathbf{M}_{\mathbf{G}} \\ \text { (calc) } \end{gathered}$	$\underset{\text { Appr }}{\substack{\text { \% }}}$
127	0,196	0,1546	21,45	0,0629	0,0315	49,9	8	4	50,0
20047	0,110	0,0989	10,70	0,0146	0,0129	11,6	293	259	11,6
40009	0,103	0,0930	10,18	0,0127	0,0114	10,3	510	457	10,4

APPENDIX E

We know that according to combinatorial calculus $\left(D n c_{j 0, \sqrt{2 N_{0 p m} \#}}\right)$ e $\left.\left(D_{n c n c o m p}^{j 0, \sqrt{2 N_{0 p m}} \#}\right]_{1}\right)$ are respectively equal to:
$\prod_{p=2}^{p_{\max }} \frac{(p-1)}{p} \quad \mathrm{e} \frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p}$
with pmax the first higher less than $\sqrt{2 N_{0 p m}}$
By developing the Dncncomp $_{\left.] 0, \sqrt{2 N_{0 p m}} \#\right]}$ (but would be entirely analogous by developing the $\left.D n c_{\left.] 0, \sqrt{2 N_{0 p m}} \#\right]}\right)$ and multiplying and dividing all the terms of the product by $p_{\max } \#$ we obtain:

Dncncomp $_{\left[0, \sqrt{2 N_{0 p m} \#} \#\right.}=\frac{1}{2} * \prod_{p=3}^{p \max } \frac{(p-2)}{p}=\frac{1}{2} * \frac{1}{3} * \frac{3}{5} * \frac{5}{7} * \ldots \ldots . * \frac{p_{\max }-2}{p_{\max }}=$
$\frac{p_{\max } \# / 2}{p_{\max } \#} * \frac{p_{\max } \# / 3}{p_{\max } \#} * \frac{3 * p_{\max } \# / 5}{p_{\max } \#} * \frac{5 * p_{\max } \# / 7}{p_{\max } \#} * \ldots \ldots \ldots * \frac{\left(p_{\max }-2\right) * p_{\max } \# / p_{\max }}{p_{\max } \#}$
where the individual terms of the final product represent the individual densities in the range $] 0$, $\left.p_{\max } \#\right]$ of the incongruous and incompcongruous numbers with $N_{0 p m}$ mod. p_1. Similarly, if we refer to the density Dncncomp $_{\left[0, \mathrm{~N}_{\mathrm{opm}]}\right.}$ it will be roughly given by the product of the individual densities D2 (p_1). This small approximation is due to the fact that both the single density (p-2)/p of the incongruous and incompcongruous with Nopm modulus p and the total density of the incongruous and incompcongruous with Nopm $\Pi(\mathrm{p}-2) / \mathrm{p}$ are correct for combinatorial calculations as long as the amplitude of the interval to which they refer is respectively a multiple of the single p or of all $p \leq$ pmax. In our interval]0, Nopm], on the other hand, the amplitude is not a multiple of any $\mathrm{p} \leq \mathrm{pmax}$ and this results in both the small difference between Dncncomp]0, Nopm] and Dncncomp]0, pmax \#] and the difference between Dinopm and the density Dncncomp]0, Nopm].
For the sake of clarity, let us give a tabular example based on the development of the various possible combinations of the incongruous numbers with $N_{0 p m}$ modulo $\mathrm{p}_{-} 1$ for all $\mathrm{p}_{-} 1 \leq p_{\max }$. In the example we refer for simplicity to the calculation of Dnc]0, Nopm] (for that of Dncncomp]0, Nopm] the reasoning is entirely analogous) and choose a small value of $N_{0 p m}$. The example is shown in figure A.

Figures A-1, A-2 and A-3 show with coloured backgrounds the n incongruous with Nopm for modules 2, 3 and 5 respectively in the intervals [1, 2], [1,3] and [1,5]. Wanting to calculate the incongruous numbers with Nopm for modules 2, 3 and 5, we first see in Fig. A-5 how the incongruous numbers with Nopm for module 2 combine with the incongruous numbers for module 3 in the interval $[1,2 * 3]$. We observe how, due to the primality of 2 and 3 , the incongruous 0 of modulus 2 combines in the interval $[1,6]$ with all values of modulus 3 and thus also with the incongruous 1 and 0 of modulus 3 . In the interval $[1,6]$ the total incongruity combinations (for modulo 2 and modulo 3) are $2=(2-1) *(3-1)$ and the Dnc density of incongruous numbers with Nopm in the same interval is $2 / 6=$ 1/3

Thus we see in Figure A-4 how the two incongruities mod. 2 and mod. 3 of the interval [1, 6] combine in the interval $[1,2 * 3 * 5]$, where $2 * 3 * 5=30=$ pmax $\#$, with all values of modulus 5 and thus also with the incongruities $0,1,2$ and 4 of modulus 5 . In the interval $] 0,30$] the total incongruity combinations (for modulo 2, modulo 3 and modulo 5) are $8=(2-1) *(3-1) *(5-1)$ and the density Dnc]0, pmax \#] of incongruous numbers with Nopm in the same interval is $8 / 30=4 / 15=0.2666 \ldots$.

Let us now consider, instead of the interval $] 0,30]=] 0$, pmax \#], the interval $] 0,23]=] 0$, Nopm $]$ and compare the density Dnc]0, Nopm] of incongruities with Nopm relative to the afore mentioned interval and obtainable from Fig. A-4 with that Dhnopm calculable as the product of the individual densities D(p_1) (see Appendix B (a)) relative to modules 2, 3, 5.

From Figure A-4 we derive that the incongruous numbers with Nopm (23) in the interval 10, 23] are 6 and that therefore the density Dnc]0, Nopm] is $6 / 23=0.2608 \ldots$.

To calculate Dhnopm instead, we calculate the individual densities $\mathrm{D}\left(\mathrm{p} _1\right)$ of the incongruous numbers with Nopm for modules 2, 3 and 5 respectively:
$\mathrm{D}\left(\mathrm{p} _1\right)=\left(\mathrm{L} *\left(\mathrm{p} _1-1\right)+[\mathrm{Nopm}] p _1-\mathrm{h}\right) / \mathrm{Nopm}$
where L is equal to the ratio between the maximum multiple $X p _1$ of $p _1$ contained in the interval $] 0, N 0 \mathrm{pm}]$ and $p_{-} 1$; where [NOpm]p_1 is the class of Nopm modulo $p_{-} 1$ and is equal to the amplitude of the interval]Xp_1, Nopm]; where h is the number of congruent numbers present in the interval]Xp_1, Nopm] and which in our case is equal to 1 , Nopm being a number congruent with itself. We will therefore have:
$\mathrm{D}(2)=(11 * 1+(1-1)) / 23=11 / 23 ; \mathrm{D}(3)=(7 * 2+(2-1)) / 23=15 / 23 ; \mathrm{D}(5)=(4 * 4+(3-1)) / 23=18 / 23$
and thus: \quad Dhnopm $=D(2) * D(3) * D(5)=11 / 23 * 15 / 23 * 18 / 23=0.2441$
From this comparison, we deduce that the relative approximation between Dnc]0, Nopm] and Dhnopm is approximately 6.4%, and it can easily be verified that the above approximation holds for increasing values of Nopm well below 10%.

This approximation is due to the fact that both the single density ($\mathrm{p}-1$)/p of the incongruities with Nopm modulo p and the total density of the incongruities with Nopm $\Pi(\mathrm{p}-1) / \mathrm{p}$ are correct for combinatorial calculations as long as the amplitude of the interval to which they refer is respectively a multiple of the single p or of all $p \leq$ pmax. In our interval $] 0, N o p m]$, on the other hand, the amplitude is not a multiple of any $\mathrm{p} \leq \mathrm{pmax}$ and this results in both the small difference between Dnc]0, Nopm] and Dnc]0, pmax \#] and that between Dhnopm and the density Dnc]0, Nopm] of the incongruous numbers with Nopm moduli 2, 3 and 5

The same reasoning with similar conclusions can be made about the approximation between Dncncomp]0, Nopm] and Dinopm

BIBLIOGRAPHY

(a) Introduction to the Analytical Theory of Numbers by Alessandro Zaccagnini: http://people.dmi.unipr.it/alessandro.zaccagnini/psfiles/lezioni/tdn2005.pdf
(b) Notes on Elementary Number Theory by Francesco Fumagalli Theory of Numbers.pdf (unifi.it)
(c) HARDY-LITTLEWORD: The First Twins Conjecture

Wikizero - Congruction of twin primes
(d) VINOGRADOV: Theorem, corollary
https://it.wikipedia.org/wiki/Ivan Matveevi\%C4\%8D Vinogradov

[^0]: ${ }^{1}$ Vinogradov's theorem [(d)] states that any sufficiently large odd integer can be written as the sum of c primes with $\mathrm{c} \geq 3$. The above theorem is only proved for $\mathrm{c} \geq 3$, whereas for $\mathrm{c}=2$ it becomes a (Goldbach's extended) conjecture and the number of pairs of equal primes whose sum equals an even n is expressed by the following relation:
 $2 \Pi_{2}\left(\prod_{\substack{p p n \\ p \geq 3}} \frac{p-1}{p-2}\right) \int_{2}^{n} \frac{\mathrm{~d} x}{\ln ^{2} x} \approx 2 \Pi_{2}\left(\prod_{\substack{p \mid n \\ p \geq 3}} \frac{p-1}{p-2}\right) \frac{n}{\ln ^{2} n}$,
 Where the term ${ }^{\Pi_{2}}$ is the constant of the prime twins. If we substitute the term 2 M at even n , with M being prime, the term
 $\left(\prod_{\substack{p, n \\ p \geq 3}} \frac{p-1}{p-2}\right)$
 fails since $\mathrm{n}=2 \mathrm{M}$ is not divisible by any prime ≥ 3 and Vinogradov's formula with $\mathrm{c}=2$ becomes the same as our (4.2.10) proved for any $\mathrm{M} \geq 127$

