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Abstract
In this document we break down the sequence of prime numbers into

sub-sequences in order to identify some properties of these to extend to
the whole sequence. In particular, we want to prove that the Goldbach
Conjecture is verified for all powers of two.

1 Introduction
In a letter, in 1742, Christian Goldbach proposed to Leonhard Euler the famous
conjecture, that took his name, asserting that every number greater than 5 can
be written as a sum of three prime numbers. Euler answered with the actual
formulation of the conjecture: every even number greater than 2 can be written
as a sum of two prime numbers. Although it has been seen through computation
that the conjecture is true for the first 4 ∗ 1018 numbers[1], it remains unsolved.
In this paper we show a method to prove that is true for the even numbers that
are power of two. In the following sections we use a geometrical approach and
some known concepts of modular arithmetic like congruences, nevertheless, we
do not use that notation, also, describing some star polygons, we do not use
the Schläfli symbols. The purpose of this work is to share with the community
some ideas and, possibly, to collect some feedbacks.

2 Circles
Let’s consider the sequences of the multiples of prime numbers where the mul-
tiples are indicated with ’x’ and the non-multiples with a ’o’.
So the sequence of 2-non-multiples is:

0 1 2 3 4 5 6 . . .
x o x o x o x . . .

Sequence of 3-non-multiples:

x o o x o o x o o . . .

Sequence of 5-non-multiples:

x o o o o x o o o o x o o o o . . .

And so on. . .
Let’s combine two sequences, the 2 and 3 non-multiples ones:

x o x o x o x o x o x o . . .
x o o x o o x o o x o o . . .

x o x x x o x o x x x o . . .
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Let’s call this (2,3)-non-multiple sequence for brevity p2#-sequence. It repeats
itself every 6 elements.
Let’s combine three sequences, the 2 , 3 and 5 non-multiples ones:

x o x o x o x o x o x o x o x . . .
x o o x o o x o o x o o x o o . . .
x o o o o x o o o o x o o o o . . .

x o x x x x x o x x x o x o x . . .

This sequence repeats itself every 30 elements. Let’s call it p3#-sequence

Observations:
• Every sequence of this kind repeats itself after an interval which is the

product of the primes pn# that generate it.

• The sequence of the first pn primes is the sequence of pn−1 combinated
with the sequence of pn.

• From the famous ”Sieve of Eratosthenes” for elements less than n2 no fur-
ther prime needs to compose the sequence that are greater than

√
n so,

there is an interval where these sequences and the sequence of the prime
numbers coincide. This is from pn + 1 to p2n+1 − 1. However, we consider
the interval between p2n and p2n+1 − 1 in order to split the sequence of
primes in n separate sub-sequences. For example, the (2,3,5)-sequence,
from position 9 to position 24, coincides with prime numbers sequence.

Lemma 2.1 If a number is a non-multiple in a pn#-sequence then is also a
non-multiple in a pn−1#-sequence

Lemma 2.2 (Sieve of Eratosthenes) If m > 1 is a number not a multiple
of the first prime numbers 2,3,5,. . . ,pn and m < p2n+1, m is prime.

The number of non-multiple and non-multiple-twins for these sequences has
been calculated by George Grob and Matthias Schmitt[2], that is, respectively∏n

i=2(pi − 1) and
∏n

i=2(pi − 2). Since these sequences are repeated, let’s close
them in a circle, such that the beginning of the sequence coincide with the end
of it. Let’s call these objects ”pn#-circles”. The position of zero is on ”6 o’clock”
and it proceeds counterclockwise. Figure 1 and Figure 2 show respectively
the p2#-circle and the p3#-circle.
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Figure 1: p2#-circle

Figure 2: p3#-circle

Figure 3 shows also the p4#-circle.
Now that we have defined these objects, we can notice that they all have a

vertical axis of symmetry.
Let’s take the p3#-circle for convenience, we can numerate the dots/circles from
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Figure 3: p4#-circle with, highlighted in green, its separate sub-sequence of prime
numbers from 49 to 120

0 to 29.

• Starting from point 2 let’s divide it in half, with a diameter.

• Do the same with the specular point, point 28.

• We call these segment ”diameter generators” or only ”generators”.
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Figure 4: p3#-circle with 2’s diameter generators (one of the diameter starting from
2, the other is specular)

Now that we have these two generators, Figure 4, we use them to project
lines with respect to them. We use the perpendicular to these two axes to build
an open broken line.

• Let’s trace the perpendicular to the diameter of 2 passing through 13.

• We arrive at another odd point, this time we shoot the perpendicular to
the diameter of 28.

• Let’s trace another perpendicular to diameter of 2 and, as soon as we
arrive at the odd on the circumference, we trace the perpendicular to the
other axis.

• At the end of this process we end up on one of the points that we had
intercepted with the initial diameters.

We call this result p3#-2-connected, Figure 5.
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Figure 5: p3#-2-connected with 2’s generators and perpendicular segments passing
through odd numbers

We can take every point of the circle to have two generators. Obviously some
are repeated for simmetry. For example, starting from any one point among 13,
17 or 28, the resulting connection is the same as the previous one where we
started from 2.
Keeping these repetitions in mind, we can still build connections for all other
points of the circle (Figure 6).

Observation:

• We see that some broken lines intercept all odd numbers, some don’t.

• The connections where we intercept all the odds with one broken line have
the same sequence as the odd numbers of the p3#-circle, that, starting
from 1 to 29 is:

oxxoxooxooxoxxo
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Figure 6: p3#-2n-connected circles with 4,6,8,10,12 and 14 as generators respectively,
the green segments are not connected with blue segments

We demonstrate this property in the next section. We denominate it
”original sequence”.

We know that the numbers 3∗5±2x are non-multiples because 2 ∤ 15 and 2 | 2x.
Vice versa, 3 and 5 divide 15 but they don’t divide 2x.
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Lemma 2.3 Given the pn#-circle and d, k ∈ N with d ̸= 1 and 1 ≤ k ≤ n∏n
i=1 pi
pk

± d ∗ pxk

is a non-multiple if and only if ∏n
i=1 pi
pk

± d

is a non-multiple.

Proof: If
∏n

i=1 pi

pk
± d is a non-multiple then we have that

d = pak pbn+1 pcn+2 pdn+3 . . . with a, b, c, d, · · · ∈ N

because the previous primes divide
∏n

i=1 pi

pk
and cannot divide d.

So
∏n

i=1 pi

pk
± d ∗ pxk is a non-multiple too.

If
∏n

i=1 pi

pk
± d is a multiple then there exists some pj with 1 ≤ j ≤ n; j ̸= k such

that pj | d so
∏n

i=1 pi

pk
± d ∗ pxk is a multiple too. ■

The only connnections that reach all the odds are those that have as the gen-
erator axis a power of 2, because

∏n
i=1 pi

2 (odd numbers) and 2x are relatively
prime. We will consider only this kind of circles in next sections.
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3 Star polygons

Figure 7: p3#-2-star

We can take any circle of those considered. Let’s take for example the p3#-
circle. Now, starting from 15, we connect all the elements moving by twice the
length of the generator, in this case 2. So we connect 15 with 15-4, 15-4 with
15-8, and so on . . . . At the end of the process we return to the point 15. We
can call the resulting figure ”p3#-2-star”, Figure 7.

We define now as ”right vertex” the vertex on the right of an hypothetical
observer positioned on the middle of the side of the star looking at the center
of the circle, at the same time we define ”left vertex” the other.

Now we can project with respect to the vertical axis of symmetry one vertex
of the star to the opposite side to build a corresponding segment of the p3#-2-
connected, as shown in Figure 8.

So for each segment of a star we can obtain a segment of the connected in
which one point is in common and the other is the specular so the nature (’*’
or ’o’) of the end-points of the segment is preserved.

If we project the left vertex of a star side we obtain a segment perpendicular
to the 2-generator and if we project the right vertex we obtain a segment perpen-
dicular to the 28-generator Figure 9(2). Now we enumerate all of the sides of
the star starting from that connecting 15 and 15-4, moving clockwise, and using
this notation: [first vertex, second vertex](index). We have [15,11](1), [11,7](2),
[7,4](3), [4,1](4), [1,27](5), . . . Now we project, for those sides of the star with
odd index, the right vertex and, for the others, the left one. As a result, Figure
9(4), we obtain the same connected figure generated in the previous section,
p3#-2-connected. Now we can demonstrate the following theorem.

Theorem 3.1 The sequence of a pn#-2x-star and of a pn#-2x-connected is the
same as the odd numbers in the pn#-circle
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Figure 8: The right vertex of a star side (in green) projected with respect to the vertical
axis of simmetry connected with left vertex forms a 90 ◦angle with one generator. As
a conseguence, the resulting chord (in red) is a segment of pn#-connected

Let’s focus on the top vertex of the star, which is 15. Starting from 15 and
moving by the double of the generator, by Lemma 2.3 the sequence must always
be the same even if this time we move by 4 and not by 2 as in the original
sequence of the circle. By the construction shown before also the connected
must follow this sequence. ■

Lemma 3.2 Given a pn#-circle and a star polygon of generator 2x inscribed
in it, if t is the number of segments of the star polygon in which both edge points
are non-multiples passing over zero then t/2 is the number of couples of non-
multiples equidistant from 2x in which one the element of the couple is between
0 and 2x.

Proof: we take as example the p3#-4-star and we focus on the ”zero position”
(6 o’clock). Starting from 15 and following clockwise the sides of the star, we
stop when we have zero between two consecutive non-multiples as shown in
Figure 10. We switch the number after zero, 29, and take the specular, 1. By
simmetry this must be also non-multiple. The segment connecting 7 and 1 is
perpendicular to the 4-generator, so 7 and 1 are equidistant from 4 (the number
1 is not a prime obviously, we handle it in section 5). Note we can obtain
the same if we project 7 instead of 29 and take the specular of the projection.
So, given the side [k, k + 2x+1](i) it doesn’t matter if i is even or odd, we can
obtain a segment where both the edges are in the right half of the circle. So,
one of them is between 0 and 4. Since if there exists a side of a star with non-
multiples in both the edges then there exists also another that is the specular
and by the previous consideration from both we obtain the same segment of
equidistant non-multiple in which one the edge is between 0 and 4. We can
conclude that the number of segments of this kind is half the number of the star
sides connecting two non-multiples passing over zero. ■
For example, in Figure 10 we have converted a p3#-4-star side to a p3#-4-
connected side. In the next section we will go deep into this case where two
consecutive non-multiples of a star side pass above zero. First we need some
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Figure 9: Transformation of p3#-2-star into p3#-2-connected. The even sides (red)
and the odd sides (green) move respectively the left and the right vertices to obtain
their projection(black)

intermediate step. We want to know how many times the sides of a star pass
over zero. The length of a lap is

∑n
i=1 pi, starting from a position to reach the

same position moving by 2m we must cover k ∗
∑n

i=1 pi with minimum k such
that 2m|(k ∗

∑n
i=1 pi). If m is a power of two, k is for sure half the length of

segment, that is m. So the laps we have to do are m, as shown in Figure 11.

Lemma 3.3 Starting from any position in a pn#-circle and moving by a step
of 2m, to reach the same position, if m ∤ (

∑n
i=2 pi), it occours to pass m times

over zero.
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Figure 10: From the broken line obtained in p3#-4-connected 4 is in the middle of 1
and 7, the red arrow shows the reverse transformation from p3#-4-star

4 Polygons and twins
Theorem 4.1 For each 2x-gon inscribed in a pn#-circle, if 2t is the number
of vertices of the 2x-gon passing between two non-multiple-twins, there are t
couples of non-multiple (a,b), such that 2x − a = b− 2x.

Considering that usually a star needs more than one lap to get closed, more
than one zero position is crossed. We have as many zero positions as the laps
of the star. These zeros are encountered by the star at precise points in the
original sequence. We take 4 as example even this time. By Lemma 3.3 we pass
over zero as many times as the number of laps we do, so they are 4. Now we do
the following proportion:

arc separing two zeros

length of 4 laps
=

arc separing two new points on circle

length of one lap

We have reported the 4 zeros into one single lap. If we connect them, it is like
inscribing a square in the circle and the zeros are the vertices. The Figure 12
shows this. Note that the first zero is encountered, starting from 15, after half
of a lap by the star so, also here the first vertex is positioned after half of the arc
after 15. The four zeros of Figure 11 are now the four vertices of the square.
Now we can extend the Lemma 3.2. In fact, if there exists some vertex of a
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Figure 11: p3#-4-star, the broken line pass 4 time over zero

regular polygon with 2x sides that lies between two twins, then we have two
non-multiples such that their sum gives 2x+1 and the Teorem 4.1 is proved. ■

In Figure 13 we have also the octagon. We can notice that 8 is not between
two primes in this circle.

Obviously the position of the vertices, if we consider the length of the circum-
ference as

∏n
i=1 pi, do not coincides with integers because we made a proportion

between not relatively prime numbers. For simplicity we call the non-multiple
twins only ”twins” but they are not twin primes. We want to demostrate that
there always exists, for all 2x-gon such that p2

n+1

2 > 2x >
p2
n

2 at least a ver-
tex that passes between two twins. Let’s start comparing the 2x-gon with the
polygon of the odd multiples of pn, which has

∏n
i=1 pi

2pn
sides. We can call these

polygons ”n-odd-gons”. More generically, we denominate (n-k)-odd-gon a poly-
gon of

∏n
i=1 pi

2pk
sides. In this case the number of the sides is obtained dividing

by pn so we call this polygon (n,n)-odd-gon. At the same time the length of the
arc whose chord is the side of the 2x-gon is

∏n
i=1 pi

2x . For simplicity, we define as
”arc” of the 2x − gon that part of the circumference between two consecutive
vertex. Now we want to know where the vertices of the (n,n)-odd-gon intersect
these arcs.

If we report into a single segment the points where the vertices of the odd-
gon intersect the arcs of the 2x-gon we have points at equal intervals, Figure
14. So we call A = [0,

∏n
i=1 pi

2x ] the arc domain where we project the odd-gon
vertices Xi of the circle domain C. Let’s call these intervals a.
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Figure 12: Polygon of 22 sides (square) which vertices pass through 2 couples of
twins. Note that 4 have exactly the half of couples, one in this case, of equidistant
non-multiples (the cirlcles ’o’)

A= V<–a
2–|—-a—-|–. . . –|—-a—-|—-a—-|–. . . –|—-a—-|–a

2–>V

V=2x-gon vertex

the length of a is the side of the 2x-gon divided by the number of the vertices
of the (n,n)-odd-gon. In general we have that a is:

an =

∏n
i=1 pi

2x
∏n

i=1 pi

2pn

=
2pn
2x

For each Xi ∈ C there exists an f(Xi) = ( 12 + k) ∗ a = Yk ∈ A and k and i are
not necessarly equal to each other so the sequence of the elements on the arc is
not the same as that of the vertices of the odd-gon in the circle.

If a vertex of 2x-gon lies between two twins, both are at a distance at most
two from the vertex. Now we define a subset B ∈ A where B = [0, 2]∪ [

∏n
i=1 pi

2x −
2,

∏n
i=1 pi

2x ]. We want to know how many Yk are in B because they are as many
as the Xi which are distant less than 2 from a vertex of the 2x-gon in C. To
do this we can append the first half of A [0,

∏n
i=1 pi

2∗2x ] to the second half of A
[
∏n

i=1 pi

2∗2x ,
∏n

i=1 pi

2x ] as figure below, we call this A′. As consequence we define B′

as a continuous subset of A′.
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Figure 13: Vertices of polygon of 23 sides (octagon) don’t pass through any couple of
twins. Note that 8 has no equidistant non-multiples

|—-a—-|–. . . –|—-a—-|–a
2–>V<–a

2–|—-a—-|–. . . –|—-a—-| A′

<——–2——–>V<——–2——–> B′

B’ is the union of two subset of range 2. So the range of it is 4.
The number of intersections of the (n-n)-odd-gon in this range B’ are b:

bn =

{
floor(4/an) if even number

floor(4/an) + 1 otherwise
(1)

So b is always even. Since 4
an

is not an even integer we have to add a δ ∈ (−1, 1):

bn =
4

an
+ δn

Open point: δ is not known.

Getting back from A to C, bn is the number of vertices of the (n,n)-odd-gon
that are distant less than two from a vertex of the 2x-gon. We can note that, if
a vertex Xi of the (n,n)-odd-gon is distant less than two from a vertex V of the
2x-gon, then Xi is one of the two nearest odd numbers with respect to V, and
by construction it’s divisible by pn: it follows that V is not between a pair of
twin non-multiples. Our goal will be to calculate how many twin non-multiples
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Figure 14: Vertices of (3,3)-odd-gon divide the arc of 2x-gon into equal parts (two
halves of part on the edges)

are eliminated this way by each of p2, p3, . . . , pn, in order to prove that at the
end of the process some twin couples remain.
Of course, there are some overlappings. For example, pnpk is a vertex of the
(n,n)-odd-gon, but it’s also a vertex of the (n,k)-odd-gon. Up to now we have
considered the polygon drawn by pn for odd numbers ((n,n)-odd-gon) therefore
also including the intersections already made by the previous prime numbers.
To avoid counting twice these common points and to get the effective number
of twin couples covered by the entry of pn, the portion 1/pk must be removed
for every 1 < k < n from the vertices of the (n,n)-odd-gon, in other words we
remove the common vertices between (n,n)-odd-gon and (n-k)-odd-gon. The
number of these common vertices is the gcd =

∏n
i=1 pi

2pnpk
between the vertices of

the two odd-gons and they form an other odd-gon of pn−1#-circle.
Example: 2∗3∗5∗7∗11

2∗11 and 2∗3∗5∗7∗11
2∗7 give 3 ∗ 5 = 2∗3∗5∗7

2∗7 = 2∗3∗5∗7∗11
2∗11∗7 .

We call this main (n-1,k)-odd-gon.
The number of vertices to remove is cn,k = 4

anpk
+ δn,k. Also here we have a

non-integer result so we added a δ to force the result to be an even number.
This result is also cn,k = bn−δn

pk
+ δn,k.

In addition to this, the portion of those couples of twins in which one of
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Figure 15: Representation of a main-odd-gon(purple) and left and right odd-gons
(red) generated from two odd-gons (one of which is not represented and the other is
the one in green). The main-odd gon is the connection of the common vertices between
the two odd-gons. The left and the right odd-gons have all the vertices in common
with the second odd-gon (not represented) and, at the same time, their vertices have a
distance of two from the first odd-gon(green). The couples of twins where the vertices
of 2x-gon (black) lie in a distance of two from main, left or right odd-gon are not
subtracted twice in the count of the total remaining couples.

the element is covered by (n,n)-odd-gon and the other element has already been
covered by the other (n,k)-odd-gons must also be removed. To do this, we
take the vertices of (n,k)-odd-gon that are 2 to the left from the (n,n)-odd-gon.
Among these, however, are kept only those vertices staying on the right within
a range of 2 of the 2x-gon. Summarizing:

• we take a pn#-circle and the (n,n)-odd-gon

• we take the (n,n-1)-odd-gon

• we take all the elements of the (n,n-1)-odd-gon that are in a range of 2
from the left of a vertex of the (n-n)-odd-gon
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• the connection of these elements is another odd-gon, we call this
left (n-1,n-1)-odd-gon

• we take the elements of this resulting odd-gon that are in a range of 2
from the right of the 2x-gon

• we finally find the vertices of the 2x-gon that have on the right a (n,n)-
odd-gon vertex and on the left a (n,n-1)-odd-gon which are distant 2 each
other.

Now we do the following proportion:

2

length of the arc of the 2xgon
=

d
(n,n - 1) - odd - gon vertices that are within 2

from the left of the (n,n) - odd - gon) vertices

This number of pairs d must to be an integer:

2∏n
i=1

pi
2x∏n

i=1
pi

2pnpn−1

< dn,n−1 <
2∏n

i=1
pi

2x∏n
i=1

pi
2pnpn−1

+ 1

Where
∏n

i=1 pi

2x is the length of the arc of the 2x−gon and
∏n

i=1 pi

2pnpn−1
is the number

of vertices of the (n,n-1)-odd-gon that are 2 from the left of the (n,n)-odd-gon.
Note that this is the same number of those vertices in common between the two
odd-gons.

2

1
2pnpn−1

1
2x

< dn,n−1 < 2

1
2pnpn−1

1
2x

+ 1

2x

pnpn−1
< dn,n−1 <

2x

pnpn−1
+ 1

By simmetry we have to double this result, considering the specular case of left
range, and we obtain the right (n-1,n-1)-odd-gon. We consider also the closest
even number so:

2dn,n−1 = 2
2x

pnpn−1
+ δn,n−1

Now we can join all the partial results and calculate t:

tn,n−1 = bn− cn,n−1−2dn,n−1 = 2x
2

pn
−2x

2

pnpn−1
−2

2x

pnpn−1
+ δn−2δn,n−1 =

= 2x
2

pn

(
1− 1

pn−1
− 1

pn−1

)
+ δn − 2δn,n−1 = 2x

2

pn

(
1− 2

pn−1

)
+ δn − 2δn,n−1

Once we have obtained three odd-gons, from (n,n)-odd-gon and (n,n-1)-odd-gon
as shown in the Figure 15, we can repeat the same operations for the each of
the resulting odd-gons and the (n,n-2)-odd-gon.

tn,n−1,n−2 = 2x
2

pn
−2x

2

pnpn−1
−2

2x

pnpn−1
−2x

2

pnpn−2
−2

2x

pnpn−2
+2x

2

pnpn−1pn−2
+
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+2
2x

pnpn−1pn−2
+2

2x

pnpn−1pn−2
+2

2x

pnpn−1pn−2
+δn−2δn,n−1−2δn,n−2+4δn,n−1,n−2 =

= 2
2x

pn

(
1− 2

pn−1

)(
1− 2

pn−2

)
+ δn − 2δn,n−1 − 2δn,n−2 + 4δn,n−1,n−2

The four addends 2x 2
pnpn−1pn−2

+δn,n−1,n−2 count the common vertices between:

• main (n,n-1)-odd-gon and main (n,n-2)-odd-gon

• main (n,n-1)-odd-gon and left and right (n,n-2)-odd-gons

• main (n,n-2)-odd-gon and left and right (n,n-1)-odd-gons

• left (n,n-1)-odd-gon and left (n,n-2)-odd-gon; right (n,n-1)-odd-gon and
right (n,n-2)-odd-gon

Note that left (n,n-1)-odd-gon and right (n,n-2)-odd-gon cannot have common
couple of twins because they are -2 and +2 with respect to the vertices of (n,n)-
odd-gon. Considering the combination for each 1 < k < n :

tn = 2x
2

pn

(
1− 2

3

)(
1− 2

5

)(
1− 2

7

)(
1− 2

11

)
· · ·+ δn,tot

tn is the upper bound of the number of couples lost by a 2x-gon when passing
from
the pn−1#-circle to the pn#-circle. Unfortunately, until now, we are not able to
define a non-exponential upper bound for δn,tot. In the next section we assume
an hypothetical upper bound for the summation of all these δ, but this is not
proved yet.

19



5 Statement and hypothesis

Theorem 5.1 ∀n, x ∈ N :
p2
n+1

2 > 2x >
p2
n

2 ∃p, q prime numbers with q > p :

q < p2n+1 ∧
p+q
2 = 2x

Starting from theorem 4.1, having also calculated t in previous section, we
have that 2x is the number of vertices between twins of a 2x-gon at the beginning
assuming that there are no primes, except 2. Now we have to subtract every
combination of odd-gons for every circle p2#,p3#,p4#,. . . ,pn# and prove that
thenumber of remaining couples is a positive number. We can also consider to
check the property only for each x such that 2x >

p2
n

2 because, if it’s true for
such x, it is also true for p2

n

2 > 2x >
p2
n+1

2 . The number of remaining vertices for
the n-th circle is

rn = 2x −
n∑

i=2

ti = 2x −
n∑

i=2

(
2x
( 2

pi

i−1∏
j=2

(pj − 2

pj

))
+ δi,tot

)

rn = 2x

(
1−

n∑
i=2

( 2

pi

i−1∏
j=2

(pj − 2

pj

)))
− δ

where δ =
∑n

i=2 δi,tot.
r must be greater or equal than 4 (we have to divide by 2 this result to obtain
the couples of equidistant non-multiples, also we can’t admit the couple with 1
because is not a prime) for every 2x >

p2
n

2 .

So if r is greater or equal to 4 there will be at least one couple of prime numbers
equidistant from 2x.

rn = 2x

(
1−

n∑
i=2

( 2

pi

i−1∏
j=2

(pj − 2

pj

)))
−δ >

p2n
2

(
1−

n∑
i=2

( 2

pi

i−1∏
j=2

(pj − 2

pj

)))
−δ ≥ 4

We can simplify the summation sn.

sn =

n∑
i=2

( 2

pi

i−1∏
j=2

(pj − 2

pj

))
= 1−

n∏
i=2

pi − 2

pi

Proof:
Since we have that

s2 =

2∑
i=2

( 2

pi

i−1∏
j=2

(pj − 2

pj

))
= 1−

2∏
i=2

pi − 2

pi
=

2

3

And also

sn+1 = 1−
n∏

i=2

pi − 2

pi
+

2

pn+1

n∏
j=2

pj − 2

pj
= 1−(1− 2

pn+1
)

n∏
i=2

pi − 2

pi
= 1−

n+1∏
i=2

pi − 2

pi
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then the equality is true. Replacing in the previous inequality:

p2n
2

(
1−

(
1−

n∏
i=2

pi − 2

pi

))
− δ ≥ 4

p2n
2

( n∏
i=2

pi − 2

pi

)
≥ 4 + δ

Note that
∏n

i=2
pi−2
pi

is the ratio between the number of twins in the circle and
the length of the circle.
An estimation of it was made by Eric Naslund[3]. However, we don’t explode
the term here.

pn

( n∏
i=2

pi
pi−1

)( n∏
i=2

pi − 2

pi

)
≥ 4 + δ

Now we formulate the following hypothesis

Conjecture 5.2 δ < pn − 4

In Table 1 we have some values of δ. Assuming this conjecture true Theo-
rem 5.1 is true because the inequality:

n∏
i=2

pi
pi−1

>

n∏
i=2

pi
pi − 2

holds since:
pi

pi−1
≥ pi

pi − 2

for each i and the equality holds if pi and pi−1 are twin primes. If rn ≥ 4 then the
2x-gon has at least four vertices that lie between twins in the pn#-circle and by
Theorem 4.1 there exist at least two couples of non-multiples equidistant from
2x, for every power of two p2

n

2 < 2x <
p2
n+1

2 . If we discard the possible couple of
1, the elements of the remaining couple are prime by Lemma 2.1 and Lemma
2.2 then the Theorem 5.1 is proved.

x n 2x
∏n

i=2
pi−2
2 w(x,n) δ

3 2 2.66666 2 +0.66666
4 3 3.2 4 -0.8
5 4 4.57143 6 -1.42857
6 5 7.48052 8 -0.51948
7 6 12.65934 14 -1.34066
8 8 19.98843 18 +1.98843
9 11 31.79086 38 -6.20914

Table 1: Values of δ for x such that p2n
2

< 2x <
p2n+1

2
. w(x,n) is the exact number of

couples of vertices of the 2x-gons between two twins in the pn#-circle.
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