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1. Introduction.

1. 1. It was asserted by GorpBaAcH, in a letter to EULER dated 7 June,
1742, that every even number 2m ‘is the sum of two odd primes, and this proposi-
tion has generally been described as ’Goldbach’s Theorem’. There is no reasonable
doubt that the theorem is correct, and that the number of representations is
large when m is large; but all attempts to obtain a proof have been completely
unsuccessful. Indeed it has never been shown that every number (or every
large number, any number, that is to say, from a certain point onwards) is the
sum of 10 primes, or of 1000000; and the problem was quite recently classified
as among those ’beim gegenwirtigen Stande der Wissenschaft unangreifbar’.!

In this memoir we attack the problem with the aid of our new transcen-
dental method in ’additiver Zahlentheorie’? We do not solve it: we do not

! E. Laxoavu, ‘Geloste und ungeloste Probleme aus der Theorie der Primzahiverteilung und
der Riemannschen Zetafunktion', Proceedings of the fifth International Congress of Mathematicians,
Cambridge, 1912, vol. 1, pp. 93—108 (p.-105). This address was reprinted in the Jahresbericht
der Deutschen Math.- Vereinigung, vol. 21 (1912), pp. 208—228.

? We give here a complete list of memoirs concerned with the various applications of
this method.

G. H. Haroxy.
7. ’'Asymptotic formulae in combinatory analysis’, Comples rendus du quatrizme

Congres des mathematiciens Scandinaves & Stockholm, 1916, pp. 45—=53.

2. ’On the expression of a number as the sum of any number of squares, and in

particular of five or seven’, Proceedings of the National Academy of Sciences, vol. 4 (1918),

pp. 189—193.
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2 G. H. Hardy and J. E. Littlewood.

even prove that any number is the sum of 1000000 primes. In order to prove
anything, we have to assume the truth of an unproved hypothesis, and, even
on this hypothesis, we are unable to prove Goldbach’s Theorem itself. We show,
however, that the problem is not ‘unangreifbar’, and bring it into contact with
the recognized methods of the Analytic Theory of Numbers.

3. 'Some famous problems of the Theory of Numbers, and in particular Waring's
Problem’ (Oxford, Clarendon Press, 1920, pp. 1—34).

4. 'On the representation of a number as the sum of any number of squares, and
in particular of five’, Transactions of the American Mathematical Society, vol. 21 (1920), pp.
255 —284.

% 5‘.‘ 'Note on Ramanujan’s trigonometrical sum cq(n)’, Proceedings of the Cambridge
Philosophical Society, vol. 20 (1921), pp. 263—271.

G. H. Harpy and J. E. LitTLEWOOD,

7. 'A new solution of Waring's Problem’, Quarterly Journal of pure and applied
mathematics, vol, 48 (1919), pp. 272—293.

2. 'Note on Messrs. Shah and Wilson's paper entitled: On an empirical formula
connected with Goldbach's Theorem’, Proceedings of the Cambridge Philosophical Society,
vol. 19 {1919), pp- 245—254.

3. 'Some problems of 'Partitio numerorum’; I: A new solution of Waring's Pro-
blem’, Nachrichten von der K. Gesellschaft der Wissenschaften zu. Gittingen (1920), pp. 33—54.

4. 'Some problems of 'Partitio numerorum’; II: Proof that any large number is the
sum of at most 21 biquadrates’, Mathematische Zeitschrift, vol. 9 (1921), pp. 14—27.

G. H. Harpy and 8. RaMaxuvsax.

7. 'Une formule asymptotique pour le nombre des partitions de #’, Comptes rendus
de UAcadémie des Sciences, 2 Jan. 1917,

2. 'Asymptotic formulae in combinatory analysis’, Proceedings of the London Mathem-
atical Society, ser. z, vol. 17 (1918), pp. 75—115. '

3. 'On the coefficients in the expansions of certain modular functions’, Proceedings
of the Royal Society of London (A), vol. 95 (1918), pp. 144—155.

E. Laxpavu,

7. Zur Hardy-Littlewood’schen Losung des Waringschen Problems’, Nachrichten
von der K. Gesellschaft der Wissenschaflen zu Gottingen (1921), pp. 88—92,

L. J. MoRDELL.

7. 'On the representations of numbers as the sum of an odd number of squares’,
Transactions of the Cambridge Philosophical Soctety, vol. 22 (1919), pp. 361—372.

A. OSTROWSKI.

7. 'Bemerkungen zur Hardy-Littlewood’schen Losung des Waringschen Problems’,
Mathematische Zeitschrift, vol. 9 (1921), pp. 28—34.

S. RAMANUIAN,

7. 'On certain trigonometrical sums and their applications in the theory of num-
bers', Transactions of the Cambyridge Philosophical Society, vol. 22 (1918), pp. 259—276.

N. M. Suau and B. M. WiLsoN,

7. 'On an empirical formula connected with Goldbach’s Theorem’, Proceedings of
the Cambridge Philosophical Society, vol. 19 (1919), pp. 238—244.
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Our main result may be stated as follows: if a certain hypothesis (a natural
generalisation of Riemann’s hypothesis concerning the zeros of his Zeta-function)
is lrue, then every large odd number m is the sum of three odd primes; and the
number of representations is given. asymptotically by

= n? (p—1)(p—2)
(I. II) Ns(n)NOB{logn)sl]( p8_3p+3 )’

R

where p runs through all odd prime divisors of n, and

(1. 12) C,=11 (I + (F—-I—-x_)s) )

the product extending over all odd primes .

Hypothesis R.

1. 2. We proceed to explain more closely the nature of our hypothesis.
Suppose that g is a positive integer, and that

h=p(9)
is the number of numbers less than ¢ and prime to q. We denote by
72 (n) = xx(n) (k=1,2,..., h)

one of the & Dirichlet’s ’characters’ to modulus q!: x, is the *principal’ character.
By x we denote the complex number conjugate to yx: y is a character.
By L(s, x) we denote the function defined for ¢ >1 by

L(s)= L(o +it) = L(s, x) = L(s, 1z) = > x’fl,?)
ne=l

Unless the contrary is stated the modulus is g. We write
L(s)=L(s, 7).

e=p8+1y

By

! Qur notation, so far as the theory of L-functions is concerned, is that of Landau's
Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, book 2, pp. 391 et seq., except that
we use ¢ for his %, % for his x, and @ for a typical prime instead of p. As regards the 'Farey
dissection’, we adhere to the notation of our papers 7 and 4.

We do not profess to give a complete summary of the relevant parts of the theory of
the Z-functions; but our references to Laundau should be sufficient to enable a reader to find
for himself everything that is wanted.
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we denote a typical zero of L(s), those for which ¥y =0, # <o being excluded.
We call these the non-irivial zeros. We write N(T) for the number of ¢’s of
L{s) for which o<y<T.

The natural extension of Riemann’s hypothesis is

HYPOTHESIS R*. Every ¢ has its real part less than or equal to —:—-1

We shall not have to use the full force of this hypothesis. What we shall
in fact assume is

HYPOTHESIS R. There is a number © <3— such that

p=O
for every ¢ of every L(s).
The assumption of this hypothesis is fundamental in all our work; all the
results of the memoir, so far as they are novel, depend upon it?; and we shall not
repeat it in stating the conditions of our theorems.

We suppose that © has its smallest possible value. In any case @_>_,12-

For, if ¢ is a complex zero of L(s), ¢ is one of L(s). Hence 1 — ¢ is one of
L(1—s), and so, by the functional equation %, one of L(s).

Further notation and terminology.

1. 3. We use the following notation throughout the memoir.

A is a positive absolute constant wherever it occurs, but not the same
constant at different occurrences. B is a positive constant depending on the
single parameter r. O’s refer to the limit process n-- @, the constants which
they involve being of the type B, and o’s are uniform in all parameters except r.

w is a prime. p (which will only occur in connection with n) is an odd
prime divisor of 7. p is an integer. If g=1, p=o0; otherwise

o<p<yq, (p!Q)=I?

(m,n) is the greatest common factor of m and n. By m|n we mean that n is
divisible by m; by m{n the contrary.

A(n), p(n) have the meanings customary in the Theory of Numbers. Thus
A(n) is log @ if n=o™ and zero otherwise: u(n) is (—1)* if n is a product of

! The hypothesis must be stated in this way hecause
(a) it has not been proved that no L(s) has real zeros between ; and 1,

(b) the Z-functions as_ociated with imprimitive(uneigentlich) characters have zeros on thelines=o.
? Naturally many of the results stated incidentally do not depend upon the hypothesis.
® Landau, p. 489. All references to Landau’ are to his Handbuch, unless the contrary is stated.
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k different prime factors, and zero otherwise. The fundamental function with
which we are concerned is

(r. 31) f(x) = 2 log @ 2@.

ko3

To simplify our formulae we write

e(x) = €272, ey (x) = (g—) .

Also

(1. 32) cqfn) = Deg(np).

It y is primitive, ’

(1. 33) 7= 7 (1) = Deg(p) xk<p)=zq‘,leq(m) 2a(m).
- -

This sum has the absolute value® Vgq.

The Farey dissection.
1. 4. We denote by I" the circle
_1
(. 41) lz]=eH=¢ =,

We divide I" into arcs §,, which we call Farey arcs, in the following manner.
We form the Farey’s series of order

(1. 42) N =[Va],
the first and last terms being % and % We suppose that g is a term of the

/ If
series, and % and Z—" the adjacent terms to the left and right, and denote by

jn,q (7> 1) the intervals

p__ 1 P, T
g qlg+q) g glg+4q")
by 70,1 and 71,1 the intervals (O’FE:—I) and (1——— N-Ii— o 1)- These intervals just

Vyp(m)==o0 it (m,q) > 1.
? Landan, p. 497.
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fill up the interval (o, 1), and the length of each of the parts into which j,, is

tivided by 2 is X ' LI i 3
divided by p is less than N and not less than g If now the intervals j, .

. . . 7
are considered as intervals of variation of Pyl where @ =arg x, and the two

extreme intervals joined into one, weobtain the desired dissection of I" into ares &, 4.1
When we are studying the arc §,4, we write

2pai
(x. 43) r=-¢e ¢ X =¢z(p)X =eq{ple ¥,

(1. 44) Y=n+16.
The whole of our work turns on the behaviour of f(x) as |x]|— 1, y—o0, and
we shall suppose throughout that o<y _5_%- When « varies on &, 4, X varies

on a congruent arc {4, and

==—(mgx_§2§)

varies (in the inverse direction) over an interval — 6, ,<60<6,,. Plainly 6, ,

y 27 T
and @, are less than o and not less than N’ so that

i A
01’-9 = Max (()p,Q3 0’p,q) < 'Q“A—y'

In all cases Y—*=(y +i6)* has its principal value
exp (—s log (n +10)),
wherein (since 7 is positive)

~§n<3hg@+im<§n.

By N,(n) we denote the number of representations of » by a sum of r primes,
attention being paid to order, and repetitions of the same prime being allowed,
so that

(1. 45) 2N,(n)x"=( ‘xa) .
@

nw=2

! The distinction between major and minor arcs, fundamental in our work on Waring's
Problem, does not arise here.
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By #,(n) we denote the sum

(1. 46) vp(n) = 2 log @, log w, . .. log w,,
o, tw e

so that

(1. 47) 2vr(m)an = (f@)y.

=2

Finally 8, is the singular series

(@\"
(1. 48) S, =2(f!;(g)) Cq(—mn).

2. Preliminary lemmas.

2. 1. Lemma r. If n=R(Y)> o0 then

(2. 11) f(x) = fi(z) + f, (),
where
(2. 12) jl(x)=24(n)x"~2 log w(@™' + &%+ ),
g >1 o
2+io
(2. 13) /2<x>=»,§§ f ¥=+I'(s) Z(s)ds,

Y—s has its principal value,

S o L(®)
2. VA = C,="
( 1'4) (3) o kLk(S)
Cy depends only on p, q and yx,
(2. 15) 0, =@
and
(2. 16) [Co)< V9.
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We have

gyn)=1

= 2 eq (P7) 2 A(lg +7)e—Ua+HY
1<j<aigpn=1 I=0

2+t
—Zeq(m)Zd lg+9), = jY"‘F(s)(lqﬂ) ‘ds,
2 i
24+t
I s )
— = [ Y- r () 2()ds,
2—i®

where

Z(s) —ze ””Zﬁi 0.

Since (g, j) =1, we have!

h
24(lq+7) I -7 ()Lk()

Ag+gr T T R A Legsy

and so

Lk(é‘)

Li(s)’

Z(s) = Z(‘k

k=1

where
1 q‘ W= g
Cr=—1 2eapi) 27).

j=1

Since 7:(j)=o if (g,7) > 1, the condition (¢,j) =1 may be omitted or retained
at our discretion.

Thus?
I .
Cy=— 7 2 eq(p7)
1<igal Jy=1
1 t(g)
-3 eq(m)=~th-

1< m < g lg,m)=1

! Landau, p. 421.
* Landau, pp- 572—573.
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Again, if k> 1 we have!

g g
Cr=—7 Dea(pi) za(f) =—’%§ﬁ2€q(m>ik<m)-

j=1 m=1

If 7z is a primitive character,

g
2 eq(m)%k(m) =T(q$ }?k),

Mem]
fv(g, W) | =Vg.*
Ve
1Cx] =5
If 7 is imprimitive, it belongs to Q=%, where d >x. Then, 7:'m) has the

period @, and

g Q d~1
2ieq (m)7e(m) = X eg(n) 1u(n) 3 &g (1Q).
mel n=1 lmQ
The inner sum is zero. Hence % =0, and the proof of the lemma is completed.?
2. 2. Lemma 2. We have
1

(2. 21) (@) < 4(log (g +1))4y 2.
We have

fu@) = X A(n)a— N log w(a™ + 2™ +- ) = f1(v) — hr2(2).
(g,n)>1 [

But

@) | <N log w Q2|

wle r=1

<Alog(g+1)logq Xlxfr<Adlog (g +1))* Qe

roe] r=1

1

< A(log (g + 1))4 log E} <4 (log(g +1))4y .

1 Landau, p. 485. The result is stated there only for a primitive character, but the proof
is valid also for an imprimitive character when (p, ¢) = 1.

* Landau, pp. 483, 489, 492.

! See the additional note at the end.

Acta mathematica. 44. Tmprimé le 15 février 1922, 2
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Also
2 log w < AVE,
r__>=2,w’=<___§'

and so

|a(@)} < D log @] | <A(I“—|x|)2‘/n|x|”
r>2m‘
1

1
<A(x—|x)) <4y 2.

From these two results the lemma follows.
2. 3. Lemma 3. We have

L' (s) b b—b
(2. 31) L(s)=—s-—1+ +b-*lll( )+2(s—g 9)
where
r'(z)
Ylz) = T®

the «’s, ¥'s, »’s and b’s are consianis depending upon ¢q and y, o 1s 0 or 1,

(2. 32) b, =1, by=o0 (k> 1),
and
(2. 33) 0<b< 4 log (g +1).

All these results are classical except the last.!

The precise definition of b is rather complicated and does not concern us.
We need only observe that b does not exceed the number of different primes
that divide g¢,* and so satisfies (2. 33).

2. 41. Lemma 4. If o<17§2, then

(2. 411) f(x)=—h—q—+kgC’ka+P

where

(2. 412) Or= T (o) Y0,
ok

! Landau, pp. 509, 510, 5I9.
* Landau, p. 512 (footnote).
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. I 3 _1 1 1
(2. 413) |PI<4Vg(oglq+mA(y Dlbel+7 2+ [¥[07Y).
k=1
—arctan 1
(2. 414) J = arc tan 0]
We have, from (z. 13) and (2. 14),
24+t
(2. 415) (@) = f Y—+T(s) Z(s)ds
2 —$0
5 O [ Ba) %
5 -3 20 u— f
kZ, = [y ) o ds= zxakfz,k(x),
say. But!?
24iw s) 6 _7]1'“” Li(s)
—3 $ - = —g (8
(2. 416) fY F(s)L( )d Y+R+2F 0Y e+ fY F(s)L(s)d
2—~—1w
e
where

R= { Y-21'(s) L"‘*)}

L(s)

{f(8)}o denoting generally the residue of f(s) for s =o.
Now?

L'(s) & log 'GI'., < & log @,
I(s) 1gQ+Z T+ Xy,

vm=1 Y

1y

3+a)_1
2"\ 2

ﬂp(

1——.3-}-«) L’(I—s)
2

2 L(t—s)

where @ is the divisor of ¢ to which y belongs, ¢ is the number of primes which

divide ¢ but not @, w,, w,, ... are the primes in question, and ¢, is a root of

unity. Hence, if ¢ = —i’ we have

! This application of Cauchy's Theorem may be justified on the lines of the classical
proof of the ‘explicit formulae’ for ¢(x) and =(x): see Landau, pp. 333—368. In this case the

proof is much easier, since Y ®I'(s) tends to zero, when |¢]— @, like an exponential ¢~

alt}

Compare pp. 134—135 of our memoir 'Contributions to the theory of the Riemann Zeta-function

and the theory of the distribution of primes’, dcta Mathematica, vol. 41 (1917), pp. 119—196.

? Landau, p. 517.
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L'(s)

(2. 417) () <Adlogg+ Aclogg+ dlog(Jt]+2)+4

< 4 (log (g +1))4 log (}¢] + 2).

Again, if 8=—§+it, Y — 5+ 40, we have
- ,1, 0
| Y—2| =] Y|*exp (t-arc tan 1—7),

| Y-sr(s)]< 4} Yl_:([t|+ 2)—%exp (—— (2%’—&1‘0 ta,nl—o—l}ltl)s

Ui
1
P R i,
log (|£] + 2) ’
and so
1. .
—~—+3® w
1 ’ L'(s 1,2
(2. 418) 2_7;;/ y—cr(s)z—%ds < A (log (q+1))A;Y|4ft 2 -0ty
1 _1
<A(log (g+1))4| Y46 2.
2. 42. We now consider R. Since
Z(s—__l_—é+~:;)=o (s=o),
we have
R={(b+B) (e} + 20 v—or(s)} =1 Y—xr(s‘)w(s'_*i‘)
) {o 2 2 I,

= A, (b+b)— (0—Db) (4, + 4, log Y) + C,(a) + Cy(a) log ¥,

where each of the C’s has one of two absolute constant values, according to the
value of a. Since

1
0<b<1, 0<b< Alog(g+1), |log Y|<Alog—1;<A,7“’é,
i

we have

1

(2. 421) |RI<A|bl+ Alog{g+ 1) 2.
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From (2. 415), (2. 416), (2. 418), (2. 421) and (2. 13) we deduce

b
fou(x) = —7-{-0;; + Py,

1

1 11
[Pil< A (log (g + )4 (1Bl + 7 2 +] Yi672),
(2. 422) fz(x')=—”(q +20 Gy + P,

1

1 11
(2. 423  |P|<4 Vq(log(q+1))4(%2|bk|+n 4| T,
k

Combining (2. 422) and (2. 423) with (2. 11) and (2. 21),-we obtain the result of
Lemma 4.

2. 5. Lemma 5. If ¢q>1 and 3. is & primitive (and therefore non-principal !)
character, then

(2. 51) L(s)= (9+a[]« ~2)e),

where
a=a(g, x)=ax,
(2. 521) |L(D]=m=gq ?|L()] (s=1),
1
(2. 522) [L(1)|=2q 2%|L'(0)] (a=o).
Further
(2. 53) 1—O<R()<O
and
(2. 54) l%-((l)) < 4 (log (g + 1))

This lemma is merely a collection of results which will be used in the proof
of Lemmas 6 and 7. They are of very unequal depth. The formula (2. 51) is
classical.? The two next are immediate deductions from the functional equation
for L(s).® The inequalities (2. 53) follow from the functional equation and the

! Landau, p. 4380.
? Landau, p. 507.
* Landau, pp. 496, 497.
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absence (for primitive x) of factors 1 —e, @, * from L. Finally (2. 54) is due
t0 GRONWALL.!
2. 61. Lemma 6. If M(T) is the number of zeros ¢ of L(s) for which

o<T<|y|<T +1,
then
(2. 611) M(T)< A(log.(q +1))4 log (T + 2).
The ¢’s of an imprimitive L(s) are those of a certain primitive L(s) corres-

ponding to modulus @, where @{g, together with the zeros (other than s=o)
of certain functions

E,=1—¢&w;*
where

feol =1, wg.

1 T. H. Gro¥wawL, 'Sur les séries de Dirichlet correspondant 4 des caractéres complexes’,
Rendiconti del Circolo Matematico di Palermo, vol. 35 (1913), pp. 145—159. Gronwall proves that

3
. 3
(Lol < 4 log q(log log ¢)®

for every complex y, and states that the same is true for real y if hypothesis R (or a much
less stringent hypothesis) is satisfied. Laxpav (Uber die Klassenzahl imaginir-quadratischer
Zahlkorper’, Gottinger Nachrichien, 1918, pp. 285—295 (p. 286, f. n. 2)) has, however, observed
that, in the case of a real y, Gronwall's argument leads only to the slightly less precise
inequality

rITX(;)-I < Aloggqg Vlog log g.

Landau also gives a proof (due to Heckg) that
G < Al
A6 Dt

for the special character (:_;g)associated with the fundamental discriminant —g.

The first resuits in this direction are due to Landau himself (Uber das Nichtverschwin-
den der Dirichletschen Reihen, welche komplexen Charakteren entsprechen’, Math. Annalen,
vol. 70 (1911), pp. 69—78). Landau there proves that

. < 4 (log ¢)*
201 !

for complex 7.
It is easily proved (see p. 75 of Landan's last quoted memoir) that

| L'(0} < 4(log 97",

80 that any of these results gives us more than all that we require.
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The number of w,’s is less than 4 log (¢ + 1), and each E, has a set of zeros,
on ¢ =0, at equal distances

27 27
fog , ~ Iog @ +)

The contribution of these zeros to M(T) is therefore less than A (log (g + 1})%;

and we need consider only a primitive (and therefore, if ¢ > 1, non-principal) L(s).
We observe: '

(a) that a is the same for L(s) and L(s);

(b) that ‘L(s) and L(s) are conjugate for real s, so that the b corresponding to
L(s) is b, the conjugate of the b of -L(s);

(¢) that the typical ¢ of L(s) may be taken to be either ¢ or (in virtue of the
functional equation) 1 —p¢, so that

8= 2( I"‘Q) 2(%+%)

is real.
Bearing these remarks in mind, suppose first that a—z1. We have then,
from (2. 51) and (2. 521),

72 1
vy k| (SR (=Rl
= 4 2RO+,
gince
(1-3) (I_“I —f- g) =1
Thus
(2. 612) [29R(d) + S| < 4 log (g + 1).

On the other hand, if a =0, we have, from (2. 51) and (2. 522),

Al M) ) M (e

and (2. 612) follows as before.
2. 62. Again, by (2. 31)

(2. 621) Iz’((;))=b+b (I“ +2(f——_e+ Q)

L(I)
i (O)L'(o)

4 _

q
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for every nomn-principal character (whether primitive or not). In particular, when
% is primitive, we have, by (2. 621), (2. 54), and (2. 33),

(2. 622)  |R(B)+S|= m%((%)—-w w(LtE)l<A(log(q+r))A.

Combining (z. 612) and (2. 622) we see that

(2. 623) S< 4 (log(g+1)4
and
(2. 624) [R(B)]|< 4 (log (g+1))4.

2. 63. If now ¢>1, and y is primitive (so that b=o0), and s=2+4iT, we
have, by (2. 31), (2. 33), and (2. 624),

0<2((2_(3;_§1 7)z+ﬁaf_y2)=m2(iz+é)
=370~ R () —wo+ 1w v ()
(s-i-a)
2

< L(s)
<A+Alog (g+1)+ A (log(g+1)4+Alog (T]+2)

|+|m(b)|+

Le)|*

< A (log (g + 1))4 log (|T'|+2),

2—8
(z—ﬂ)“r(T 7)

3 <4 (log (g+1))4 log (7] +2).
| T—

Every term on the left hand side is greater than 4, and the number of terms
is not less than M(T). Hence we obtain the result of the lemma. Wé have
excluded the case ¢ = 1, when the result is of course classical.®

2. 71. Lemma 7. We have

(2. 711) [6]< Aq (log (g + 1))4.

Suppose first that y is non-principal. Then, by (2. 621) and (2. 54),

(2. 712) |6]< 4 (log (g + 1)) +

! Landau, p. 337.
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We write

(2. 713) 2=+ 2

where 21 is extended over the zeros for which 1— 0O < SRY(Q) <@ and 22 over

those for which R(p)=o0. Now 21 =8, where §' is the S corresponding to a
primitive L(s) for modulus ¢, where Q[q. Hence, by (2. 623),

(2. 714) | 2] < 4 (og (@ +1))4 < 4 (log (¢ +1))4.

Again, the ¢’s of 22 are the zeros (other than s= o) of

-5

v k4

the m,’s being divisors of ¢ and & an m-th root of unity, where m=¢(Q)<gq?;
so that the number of w,’s is less than 4 log ¢ and

6,,=-‘62"in,
where either w,=o0 or

I I

_.Slwvli_"

q= =2

Let us denote by g, a zero (other than s =o) of 1 —& @, °, by ¢'» a o, for which
lev|< 1, and by ¢", a g, for which |g,{>1. Then

2o rll=2@e 2z

v ol 9”'&'{ |

(2. 715)

Any g, is of the form

_27t(m+ w)
YT logw,

where m is an integer. Hence the number of zeros g/, is less than 4 logw, or
than 4 log (¢+1); and the absolute value of the corresponding term in our sum
is less than

A  Alog @,

2. 716 C1< T o <A4glog (g +1);
(2. 716) ol < Tanl g log (¢ +1)

! For (Landau, p. 482).¢, = X(w,), where X is a character to modulus @.

Acta mathematica. 44. Imprimé Ie 15 février 1922, 3
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so that

(2. 717) IZ <Aq (log (g + 1)

Also

(2. 718) ‘ — | 2
9” gu Q(I Q Q” ‘le

< A (log w,)* 2 i; < 4 (log (g +1))®.

me1l

From (z. 715), (2. 717) and (2. 718) we deduce
(2. 719) | 2] < 44 Qog (g + 1))4;

and from (2. 713), (2. 714) and (2. 71g) the result of the lemma.
2. 72. We have assumed that x is not a principal character: For the
principal character (mod. g) we have!

L) =11 {r— 23) t@-
7|e

Since a=o0, =1, we have

2 log @ + sy  L'\(s)

wlg'af‘—-‘x (s}  L(s)

SRR It

Z;iﬁiﬂim (%%+8f_1)=wa+b»§w(£)+2(119+f

ol s—1
el

This corresponds to ¢z. 712), and from this point the proof proceeds as before.

[Bl<d log (g +1)+

! Landau, p. 423.

: 2 refers to the complex zeros of L,(s), not merely to those of £(s).
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2. 81. Lemma 8. If o<n;§ then

(2. 811) . ‘u(q) h

f(x) = WY +k§10ka + P,
where
(2. 812) Gr= z (o) Y—e,

o

~ 1 1 1

(2. 813) |P|< 4Vq (log (g+1)4 (g -+ 2+ 7867 2),
- i/

(2. 814) 0 = arc tan 9]

This is an immediate corollary of Lemmas 4 and 7.

2. 82. Lemma 9. If o<n§_§ then

(2. 82z1) f@)=9+0,
where

a0
(2. 822) =5y’

_ _1 —g-1
(2. 823) |<D|<AVq(Iog(q+I))A(q+17 24 |Y|-96 ° 2 log (§+2)),

- .
(2. 824) J = are tan ]
We have
(2. 825) 1G22 3,11 (@) Y=ol + 21T (e) Y,

where 21 extends over g’s for which |y|>1, 22 over those for which |y|< 1.
In 21 we have

(o) Y=e|=|T(8+iy)|| Y| Pexp (7 arc tan ?—7)
1
éA|7|ﬂ_§l YI-?exp (— (gn— arc tan l—??—l)lyl)

1
<dlyTEH Yo
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(since | Y|< A and, by hypothesis R, < ®). The number M(T) of ¢’s for which
|7] lies between T and T +1 (T >o0) is less than A (log (g + 1))4 log (T' +2), by
(2. 611). Hence

1 il 1
S 2o < 4 (log (g+ )4 Y (n +1)° B log (n +2) e0n

n~0

1
<A (log(g+1))4 § %2 log (g + 2) ,

1
(. 826)  3,IT(Q Ye|<4 (log (g+ 4| THo8™ " Zlog (5 +2)-

2. 83. Again, once more by (2. 611), 22 has at-most A (log (g + 1))4 terms.
We write

(2. 831) 22= 22,1 + 22,2’

22 . applying to zeros for which 1 — 0 <8< 0, and 22 , b0 those for which f=o.
Now, in 22,

[Y~¢|=| ¥[~fexp (y arc tan n) < A| T,
and in 221,|F(9)|<A. Hence
(2. 832) |Zz"1|<A|Y|-—ﬂ2m|r(g)|<A|Y[—92 1< 4 (log (g +1)4| Y I-°.

Again, in 22,2,|Y|<A and

< Aqlog (g +1),
fel
by (2. 716); so that

(2. 833) | 2,:] <4 2,00 @ =43, T@TQ”
<43, ﬁf Ag (log (g +1))4

From (2. 825), (2. 826), (2. 831), (2. 832), and (z. 833), we obtain

1
(2. 834)  |Ga]< 4 (log (g+ 1))4 (q+|Y|T96 °~2 log (§+z))=Hk,
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say; and from (2. 811), (2. 812), (2. 813), (2. 821), (2. 822) and (2. 834) we deduce

h
I(Dl=l ZCka + P

kel

h - . 1 1 _1
<2|0k6’k|+AVq(log(q+1))A(q+n 24| Y40 2)

kel

Vg < - - —6—1 I
<HL D Hi+ AVqog(g+ )4 (g +n T+ T8 og (5 +2))
Fomel

1

1
< AVq(log (g + x))A(q+n“§+| Yo ® log (j-;- +2)) .

that is to say (2. 823).
2..9. Lemma 10. We have

(2. g1) h=g(q) > Aq (log ).
We have in fact!

p(g) > (1—d)eC (g>¢.(9))

q
log log ¢

for every positive d, C being Euler’s constant.

3. Proof of the main theorems.

Approrimation to v.(n) by the singular series.
3. 11. Theorem A. If r is an infeger, r>3, and

F@)y = X ve(n) an,

(3. 111)
so that
(3. 112) vyp(B) = 2 log w, log @, - -log @,
G+ Tyt - 4 Tpen
then
nr—1 r—14(6=3) nr—!
(3. 113) ve(n) = (r——T)!S' +0 (n +( 9 (log n)B) oo (-;‘,_jx“)-!&,

! Landau, p. 217.
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where

_ ¥ (e,
(3. 114) S: _—q§1 ((p(q)) cg{—m).

It is to be understood, here and in all that follows, that O’s refer to the
limit-process n — o, and that their constants are functions of r alone.

If n>2, we have
dz
(3. 115) vr(n)=_— | ({0 2%

the path of integration being the circle |2]=e¢—#, where H =%, so that

I

-
1 —|o] = +0(F)Nﬁ-

I
n

Using the Farey dissection of order N ={Vn], we have

N
(3. 116) w=3 35 G dh

g=1 p<q,(p,g)=1

t
271

=Zeq(——np)

= 2 ea(—1D)jng,
say. Now
L —grl<lol(f=2 4| =20+ 4 [gr=1)
< B(of—'|+|ogr-1)).
Also [ X—n|=e"# < 4. Hence

(3. 117) Ip.a=lpg + Mp,gq,
where
1 dX
(3. 118) lpo= prll L Ew g
n.q
Op.q
(3. 119) Imaal=0 [40r=)+10g-1)as).

~0'p.q
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3. 12. We have 77=H==7—§ and ¢ < Vn, and so, by (2. 823),

3

]
(3. 121).  |@] < An* (log n)4 + 4 (log n)4 Vq| Y|—96‘9_7é log (Ei + 2) )

where . — arc tap .. We must now distinguish two cases. If |6]| <7, we have

101
[Y|>4dn 6> 4,

and

. Lol g 1 oul
(3. 122) Vq|Y|-e4 %log (3+2)<An41;-9=‘4n 4,
If on the other hand 4 <}0|<8,,, we have

6>Al%l>§»|Y|>A|0|,
1

_ —p-1 ~ _g-1 1
(3. 123) Vg|Y|-94 ° 2 Jog ((—Is+2)<AVq.|0|“9.n ° 2|0|9+2.logn

1 1 1 _1 1
—An’t? logn(q|0|)2<A'n9+2log n.n 4=An6+4log n,

1
since ¢|0|<q0pq<An % Thus (3. 123) holds in either case. Also @;g and
so, by (3. x21),

1
(3. 124) o)< An’s (log m)4

3. 13. Now, remembering that r >3, we have

bp.q p.q
j lplr-1d6 < Bh—— J | Ye-1d6
LY —b'pg

it 1
< Bh—tr—1 (,72+03)_§

0

{r—1)

" do

< Bh—tr=Dpr-2;
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and so
fp0
(3. ¥31) > |®gr-1]d0 < Bnr—t (Max|o®]) Jh—t~2
X 2
»e
1'—2+6+l r—~1+(9—§)
< Bn 4(log n)? = Bn ¥ (log n)E,

by (3. 124) and (2. g1).
3. 14. Again, if arg =1, we have

.0 34 2‘Jr
2f|f|*d0=]m*dw
0

_-0! ,g

=2n2 (log w)?|zP¥ < 4 2 log m A (m)|x 2™
@

M2

<d—1z 3 (102 a)lopm

m=2 kw2

<A(z—]|z]) Xmlog m|zfem-

m=2

A 1
<I——|x|l°g (I_le)<Anlogn.

Similarly
A
: Rt m :
I/I;%lc’gwlxl <2 Azl < T <An.
Hence
L 2
(5. 141) S [ lir-ieldo <masiop— [irray
P g 0

1
< Bne+zlogn.n’“3.nlogn

r—1+ (9——%)

<Bn (log n)B.
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From (3. 116), (3. 117), (3. 119), (3. 131) and (3. 141) we deduce

(3. 142) vo(n) = Deg (= np) g + 0 (a9 (10g m)3),

where I, , is defined by (3. 118).
3. 15. In l,, we write X —=e~7, dX =-—e¢~YdY, so that ¥ varies on the
straight line from %+ i0,, to y—i6/,, Then, by (2. 822) and (3. 118),

n—if’
(3. 151) I (ulgh* e .
— = Y —ronY
Ing ZM.( : ) Y-rei¥dY.
7 +4b, g

Now
"i"‘io'p,q n‘-l-‘iao o
(3. 152) —f - jY—’e”YdY+0‘[}n+i0|~fd0)
Zi

7+ iﬁp’q n—t®

A g
—mi Ty 0(fm+w|—rdo),
—1)!
bq

(r
where
. . 1
0q = %1(1141.(0,“, 0p,q)_->_=2 qN'
Also
(3. 153) f(n +10)-7do <f0-’d0 <BOy"<B(gVn) ",
bq 0q
From (3. 151), (3. 152) and (3. 153), we deduce
_ - T oy ey’ |
(3' 154) Zeq( np)lﬂyq_(r_I)!p’zq((p(q)) eQ(*np)—‘_Q’
where
(3- 155) 1

lr__ Sr— r—1
|Q|<BZh"q"‘n2( V< Bnt" Y (g)
plq q k

oy & 1
< Bn? 2 (log ¢)2 < Bn? (log n)5.
g=1

Acta mathematica. 44. Imprimé le 15 février 1922.
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Since r >3 and @__>_§, 2~r<r-—1——i§r——1+ (@,——3); and from (3. 142),

(3-134), and (3. 155) we obtain

Z(;‘)Eg—))) eq(—mn p) +0( )(]ogn )

(3. 156) vr(n) = —

(,-ri—l)l 2 (M q)) cg(—mn) + 0( 1+(e (log n)B)

3. 16. In order to complete the proof of Theorem A, we have merely to
show that the finite series in (3. 156) may be replaced by the infinite series §,. Now

e 8 i

<B*n'-l =7 (lo B<Bn2 log n)B,
o0 4= (log ) (log n)

e>N

and 21‘ <r—1+ (@—— 3) Hence this error may be absorbed in the second term

of (3. 156), and the proof of the theorem is completed.

Summalion of the singular series.
3. 21. Lemma 11. If

(3. 211) cq(n) = N eg(np),

where n ts a positive infeger and the summation exlends over all positive values of p
less than and prime fo q, p = o being included when g= 1, bul not otherwise, then

(3. 212) g (—n)=cq4(n);
(3. 213) Cqq () = cq(n) cqi(n)
if (g, ¢)=1; and

(3. 214) calw) = Bon (¢

where § is a common divisor of q and n.
The terms in p and ¢— p are conjugate. Hence ¢4(n) is real. As c4(»)
and c¢,(—m) are conjugate we obtain (3. 212).1

! The argument fails if ¢ =1 or ¢ =2; but ¢,(n)=¢,(—n) =1, ¢,(n) =¢c,(— n)= — 1.
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Again
p P 2nP,rz
cq(m)eg (n) = Zexp 2R (_+,.} zex 9

»p' q .y

L]

where
P=pqg+pq.
When p assumes a set of ¢(g) values, positive, prime to ¢, and incongruent to
modulus ¢, and ' a similar set of values for modulus ¢, then P assumes a set
of ¢(9)9{g') = ¢(gq) values, plainly all positive, prime to gq' and incongruent to
modulus ¢g'. Hence we obtain (3. 213).
Finally, it is plain that

g—1
Dca(n)= D eg(nh),

dlg he

which is zero unless g{n and then equal to g. Hence, if we write

g =q (gln), 3nlg)=o0 (gin),
we have

Dca(n) =n(g),

dig
and therefore

Cy(n) = r(d);tg
«( = D@ g

by the well-known inversion formula of Mobius.! This is (3. 214).2
3. 22. Lemma 12. Suppose that r> 2 and

{g)
(3. 221) - 2 (:;) Z) egl--n).
Then
3. 222) S,=o

! Landau, p. 577.

? The formula (3. 214) is proved by Ramaxuviax (On certain trigonometrical sums and their
applications in the theory of numbers’, Trans. Camb. Phil. Soc., vol. 22 (1918), pp. 259—276 (p. 260)).
It had already been given for #n =1 by Laxpav (Handbuch (1909), p. 572: Landau refers to it as
a known result), and in the general case by Jexsen (‘Fi nyt Udtryk for den talteoretiske Funk-

tion 2 pn)y=Mn), Den 3. Skandinaviske Malematiker-Kongres, Kristiania 1913, Kristiania (1913),

p- 145). Ramanujan makes a large number of very beautiful applications of the sums in ques-
tion, and they may well be associated with his name.
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tf » and r are of opposite parity. But if n and r are of like parity then

. p—1)y+(—=17(p—1)
(3. 223) Sr—zorl;[( P—1)y —(—1) )’

where p s an odd prime divisor of n and

(3' 224) Cr=l_l (I—(—’éj':_i?).
W=3
Let
aviy _
(3. 225) ({p (q)) cq(—n) = 4,.
Then

1(gg) = (D) 1lg), 9(29)=9(9) 9(g); g (— 1) = co(— n) ey (—n)
if {¢, ¢') =1; and therefore (on the same hypothesis)
(3. 226) Agg=A4,44.

Hence!
S,=A,+A,+ A+ =1+ 4+ =[] 1

o
where
(3. 227) tog=1+dAgt+Aep+tAgp+ =1+ A4g,
since Az, Ags, -+ vanish in virtue of the factor u(q).
3. 23. If win, we bave
p@)=—1, p(®)=®—1, ¢x(n) = p(w)=—1,
R ki
(3 231) A'U = -(—’GT'— I)T

If on the other hand w|n, we have

cxn)=u(@ +ou(t) = —1

—_ I)T
(3. 232) Ag= (;;,L:—Iy—_r

t Since | Cq(n)lf__za, where | n, we have cq(n) = O(1) when # is fixed and ¢g—®. Also

by Lemma 10, 2(q) > Ag(log q)”A. Hence the series and products concerned are absolutely

convergent.
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Hence

(3 233) Sr =ﬂI|l (I +(ﬁf(%11:))’27) I,l (I (1(5_ I)1:)’)
n ‘G’Tﬂ

If » is even and r is odd, the first factor vanishes in virtue of the factor
for  which @ =2; if n is odd and r even, the second factor vanishes similarly.
Thus S, = o whenever n and r are of opposite parity.

If n and r are of like parity, the factor corresponding to @ = 2 is in any
case z; and

(—-1 Pp—x)+(—1)(p—1)
S“Zﬂ( )l;l( b )
as stated in the lemma.,

Proof of the final formulae.
3. 3. Theorem B. Suppose that r> 3. Then, if n and r are of unlike parity,
(3. 31) vp(n) = o(n'—1),

But if n and r are of like parily then

- p— 1)+ (—1)(p — 1))
(- 32) vr(n) o (r—I 1ﬂ( =)

where p is an odd prime divisor of n and

(3. 33) | | (I ‘"(_(zi——l—)x)) .

=3

This follows immediately from Theorem A and Lemma 12.1
3. 4. Lemma :3. If r>3 and n and r are of like parity, then

vr(n) > Bn—1,
for n> n,(r).

! Results equivalent to these are stated in equations (5. 11)—(5. 22) of our note 2z, but
incorrectly, a factor

(log m)™"

being omitted in each, owing to a momentary confusion between v,(n) and N.(n). The v,(n)
of 2 ig the N, (n) of this memoir.
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This lemma is required for the proof of Theorem C.. If r is even

(p—1)+p—1
l” (p—1)y—1 )>I'
If » is odd

525 5 25 o) -

In either case the conclusion follows from (3. 32).
3. 5. Theorem C. If r>3 and n and r are of like parily, then

(3. 51) No(n) oo ﬂ%é%

We observe first that
N.(n)= 2 1< 2 1< Bnr-t
@+ Tt T=n Mitmet-tme=n
and
(3. 511) wp(n) = 2, log @, --‘log @ < (log n) Nr(n) < Bn™1(log n)r.
@+t tw, =0
Write now
(3. 512) vo=9,+",, N.=N .4+ N",,
where 4, and N', include all terms of the summations for which
s> (0<€0<r1,8=1,2,...,7).
Then plainly
(3- 513) v's(n) > (1 — 3)" (log n)r N'r(n).
Again

.err(n);rE ( 21 *
&+ T+

@, <n!™0 T =n— @

< BZN’I‘——I(n—’ W) < Bnl=d nr—2 Bnr—1-9,
@, <nl=?

v, (n) < (log n)r N",(n) < Bur—1—%(log n).
But »,(n) > Bn—! for n>n,(r), by Lemma 13; and so
(3. 514) (log n)y N",(n) = o(#(n)}), #"+(n)=o(w(n)),

for every positive d.
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From (3. 511}, (3. 512}, (3. 513), and (3. 514) we deduce
(1 —3dy (log )" (N, — N") < v, — v", < (log n}" N,,
{1 —38) (logn)" N.<», +olv,)<(log ny N,,

—_— 7,

Ve .. 7 <
lim Gog ny &, '™ (og ny ¥, =T

(x—dy <

As § is arbitrary, this proves (3. 51).

3. 6. Theorem D. Every large odd number n is the sum of three odd p1imes.
The asymplotic formula for the number of representations N,(n) is

_ nt p—1)(p—2)
(3. 61) N3(")N03(logn)3n( PP~ 3p+3 )

where ¥ 1s a prime divisor of n and
3 I
(3 62) 05 —}]3 (I + (’Ef_:_—{)—?’) .

This is an almost immediate corollary of Theorems B and C. These theo-
rems give the corresponding formula for N, (n). If not all the primes are odd,

two must be 2 and #—4 a prime. The number of such representations is one
at most.

Theorem E. EKvery large even number n is the sum of four odd primes (of

which one may be assigned.) The asymyptotic formula for the lotal number of repre-
sentations is

= (p—1)(p*—3p+3)
(3. 63) N, (m)co logn " ((p~z) (p’—2¥>+2>>

where p is an odd prime divisor of n and

o0

(3. 64) R | | (1 *(ﬁéﬁ)‘

We=3

This is a corollary of the same two theorems. We have only to observe
that the number of representations by four primes which are not all odd is
plainly O(n). There are evidently similar theorems for any greater value of 7.
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4. Remarks on ’Goldbach’s Theorem’.

4. 1. Our method fails when r=2. It does not fail in principle, for it
leads to a definite result which appears to be correct; but we cannot overcome

the difficulties of the proof, even if we assume that @— 2 The best upper

1
bound that we can determine for the error is too large by (roughly) a power nt.

The formula to which our method leads is contained in the follpwing'
Conjecture A. Hvery large even number is the sum of two odd primes. The
asymptotic formula for the number of represeniatives is

n pP—1
(4. 11) N,(n) oo 20, (fog n)’Ip[ (p — 2,)

where p s an odd prime divisor of n, and
(4 IZ) 03 = “ (I ——(-1%“::[‘)‘;;)'
@w=3

We add a few words as to the history of this formula, and the empirical
evidence for its truth.!

The first definite formulation of a result of this character appears to be
due to SyrLvesTER?, who, in a short abstract published in the Proceedings of
London Mathematical Society in 1871, suggested that

(4. 13) N, (n) co @ 2)

log n (EZ I
where

32w<Vn, win.
Since :

0 E=)-1 (-m2p) 0 (—g~cl (-3

w<Vn o< Vn a<Vn a<Vn

1 As regards the earlier history of 'Goldbach’s Theorem’, see L. E. Dickson, History of
the Theory of Numbers, vol. 1 (Washington 1919), pp. 421—425.

3 J. J. SyrvesTeR, 'On the partition of an even number into two primes’, Proe. London
Math. Soc., ser. 1, vol. 4 (1871), pp. 4—6 (Math. Papers, vol. 2, pp. 709—711). See also 'On the
Goldbach-Euler Theorem regarding prime numbers’, Nature, vol. 55 (1896—7), pp. 196—197, 269
(Math. Papers, vol. 4, pp. 734—737)-

We owe our knowledge of:Sylvester's notes on the subject to Mr. B. M, Wirsow of Trinity
College, Cambridge. See, in connection with all that follows, Shah and Wilson, 1, and Hardy
and Littlewood, 2.
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and?!

(4. 14) I[( I o2

I——| 00—
_ w: logn
W< Vn

where C' is Euler’s constant, (4. 13) is equivalent to

I

- n pP—1
(4. 15) Ny(n)oo 4e Coz(_lag“n_)él;l(p__z

and contradicts (4. 11), the two formulae differing by a factor 2e~C=1.123...
We prove in 4. 2 that (4. iI) is the only formula of the kind that can possibly
be correct, so that Sylvester’s formula is erroneous. But Sylvester was the first
to- identify the factor

(4. 16) I (z::)

to which the drregularities of N,(n) are due. There is no sufficient evidence to
show how he was led to his result.

A quite different formula was suggested by STickEL? in 18¢6, viz.,

N oo ot 1H (52

This formula does not introduce the factor (4. 16), and does not give anything
like so good an approximation to the facts; it was invany case shown to be
incorrect by LANDAU? in 1g00.

In 1915 there appeared an uncompleted essay on Goldbach’s Theorem by
Mzeriin® MErLIN does not give a complete asymptotic formula, but recognises
(like Sylvester before him) the importance of the factor (4. 16).

About the same time the problem was attacked by Brun® The formula

to which Brun’s argument naturally leads is

! Landan, p. 218.

* P, Sricken, 'Uber Goldbach's empirisches Theorem: Jede grade Zahl kann als Summe
von zwei Primzahlen dargestellt werden', Gittinger Nachrichten, 1896, pp. 292-—299.

¢ E. Laxpav, 'Uber die zahlentheoretische Funktion @{n) und ihre Beziehung zum Gold-
bachschen Batz’, Gottinger Nachrichten, 1900, pp. 177—186.

*J. Meruy, 'Un travail sur les nombres premiers’, Bulletin des sciences mathématiques,
vol. 39 (1915), pp. 121136,

5 V. Brouy, 'Uber das Goldbachsehe Gesetz und die Anzahl der Primzahlpaare’, Archiv for
Mathematik (Christiania), vol. 34, part 2 (1915), no. 8, pp. 1—15. The formula (4. 18) is not actually
formulated by Brun: see the discussion by Shah and Wilson, 1, and Hardy and Littlewood, 2.
See also a second paper by the same author, 'Sur les nombres premiers de la forme ap+ b,
tbid., part. 4 (1917), no. 14, pp. 1-~9; and the postscript to. this memoir.

Acta mathematica. 44, Ymprimé le 16 février 1922, 5
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(4- 17) Nz(n)c\:anIv[(z—};),
where
(4. 171) =1 (I‘;)

3<w<Vn

This is easily shown to be equivalent to

2, n p—1\
(4. 18) N,(n)co8e 2/0,555)4[(@2),

and differs from (4. 11) by a factor 4¢~20=1.263... The argument of 4. 2
will show that this formula, like Sylvester’s, is incorrect.

Finally, in 1916 STACKEL® returned to the subject in a series of memoirs
published in the Sitzungsberichte der Heidelberger Akademie der Wissenschaften,
which we have until very recently been unable to consult. Some further remarks
concerning these memoirs will be found in our final postscript.

4. 2. We proceed to justify our assertion that the formulae (4. 15) and
(4. 18) cannot be correct.

Theorem F. Suppose it to be true that®

IS | it
(4. 21) Nam oo 4o M [y =
if

n = 2% pop'e (¢>0,a,d, > 0),
and
‘ n
(4 22) 001 = (g )
if n is odd. Then
o I

(4. 23) A=202=H (I—(m‘——l)g)'

@3

L P, Sricker, ‘Die Darstellung der geraden Zahlen als Summen von zwei Primzahlen’; 8
August 1916; ‘Die Liickenzahlen »ter Stufe und die Darstellang der geraden Zahlen als Sum-
men und Differenzen ungerader Primzahlen’, I. Teil 27 Dezember 1917, II. Teil 19 Januar 1918,
II1. Teil 19 Juli 1918.

? Throughout 4.2 4 is the same constant.



Partitio numerorum. III: On the expression of a number as a sum of primes.

Write
(4. 24) .Q(n)=AnI;[(%E~;—) (n even), 2(n)=o0 (n odd).

Then, by (4. 21) and Theorem C, now valid in virtue of (4. 21),

(4- 25) vy(n) =, log & log @' co Q(n),

T+a'=n
it being understood that, when = is odd, this formula means

#,(n) = o(n).
Further let

o= 320y 2

ns

these series being absolutely convergent if 3(s) >2, R(u)>1. Then

(4. 26) fi) =4 I~ (ﬁ = ;)

n=0(mod.2) ¥

— —au y—au p—a'u (P—I)(P'—I)--.
_Aagoz P P Cp—2)(p—2)...

T =i
I 2 =3

2-* 4 = w—1 @Y 27% A
I[( +%—z I-——’ID'_“)

§(u),

T —2—u

say. Suppose now that u— 1, and let

— U

v =11 [+ -7 5=) =1L (=) - =30,

Then B y
=M 225 T e 2)
U IR | (B
(50 -

Hence

4 A

A A
(427 f@ e s o Gau)eo Fllu)eo g = =y

35



36 G. H. Hardy and J. E. Littlewood.

On the other hand, when z—1,
n LR L
2v2(n)x N(Z log m’xﬂ) C\U(I._z)g
and so!
(4. 28) 4/2(1)+4/2(2)+-~+1f2(n)c\'>§nz.

It is an elementary deduction?® that

9(3)=2V2n(,:l)mznsl—1msiz

when s—z; and hence? that (under the hypotheses (4. 21) and (4. 22))

1
(4. 20) sy oo X
Comparing (4. 27) and (4. 29), we obtain the result of the theorem.

4. 3. The fact that both Sylvester’s and Brun’s formulae contain an
erroneous constant factor, and that this factor is-in each case a simple function
of the number ¢—C, is not so remarkable as it may seem.

In the first place we observe that any formula in the theory of primes,
deduced from considerations of probability, is likely to be erroneous in just this
way. Consider, for example, the problem ‘what is the chance that a large number
n should be prime? We know that the answer is that the chance is approxim-

1
ately fogn

Now the chance that n should not he divisible by any prime less than a
fized number 2z is asymptotically equivalent to

wI<[ac (Iﬁ—;—’);

1 We here use Theorem 8 of our paper 'Tauberian theorems concerning power series and
Dirichlet's series whose coefficients are positive’, Proc. London Math. Soc., ser. 2, vol. 13, pp.
174—192. This is the quickest proof, but by no means the most elementary. The formula
(4. 28) is equivalent to the formula

n
M N myeo
200 oy

used by Landau in his note quoted on p. 33.

? For general theorems including those used here as very special cases, see K. Knorp,
Divergenzcharactere gewisser Dirichlet'scher Reihen’, dcta Mathematica, vol. 34, 1909, pp. 165—
204 (e. g. Satz III, p. 176).
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and it would be natural to infer! that the chance required is asymptotically
equivalent to

But 2

and our inference is incorrect, to the extent of a factor 2e~C,

It is true that Brun’s argument is not stated in terms of probabilities?
but it involves a heuristic passage to the limit of exactly the same character
as that in the argument we have just quoted. Brun finds first (by an ingenious
use of the ’'sieve of Eratosthenes’) an asymptotic formula for the number of
representations of n as the sum of two numbers, neither divisible by any fixed
number of primes. This formula is correct and the proof valid. So is the first
stage in the argument above; it rests on an enumeration of cases, and all refe-
rence to ’'probability’t is easily eliminated. It is in the passage to the limit
that error is introduced, and the nature of the error is the same in one case
ag in the other.

4. 4. Suan and WriLsox have tested Conjecture 4 extensively by comparison
with the empirical data collected by CanTor, AuBRY, HAUSSNER, and RiPERT.
We reprint their table of results; but some preliminary remarks are required.
In the first place it is essential, in a numerical test, to work with a formula
N,(n), such as (4. 11), and not with one for »,(n), such as (4. 25). In our
analysis, on the other hand, it is »,(n) which presents itself first, and the formula
for N,(n) is secondary. In order to derive the asymptotic formula for N,(n),
we write

v,(n) = 2 log @ log @' oo (log n)® N,(n).
T+w'=n

The factor (log »)? is certainly in error to an order log n, and it is more natural®
to replace »,(n) by
((logn)® —2logn+---)N,(n).

* One might well replace @< Va by @ <#n, in which case we should obtain a probability
half as large. This remark is in itself enough to show the unsatisfactory character of the argument.

! Landau, p. 218.

¥ Whether Sylvester's argument was or was not we have mo direct means of judging.

* Probability is not a notion of pure mathematies, but of philosophy or physics.

¢ Compare Shah and Wilson, I ¢, p. 238. The same conclusion may be arrived af in
other ways.
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For the asympiotic formula, naturally, it is indifferent which substitution
we adopt. But, for purposes of verification within the limits of calculation, it is
by no means indifferent, for the term.in log n is by no means of negligible
importance; and it will be found that is makes a vital difference in the plausibility
of the results. Bearing these considerations in mind, Shah and Wilson.worked,
not with the formula (4. 11), but with the modified formula

n p—1
N'—’(n)we(‘n)=202(log n)? — 2 log nIp[ (P——z,.

Failure to make allowances of this kind has been responsible for a good
deal of misapprehension in the past. Thus (as is pointed out by Shah and
Wilson!) Sylvester’s erroneous formula gives, for values of n» within the limits
of Table I, decidedly beiter results than those obtained from the unmodified
formula (4. 11).

There is another point of less importance. The function which presents
itself most naturally in our analysis is not

Hz) = 2 log wa®
but

g(a) = X A(n)am = N log w2,

@l
The corresponding numerical functions are not »,(n) and N,(n), but

g:(n) = X A(m) 4(m), @,(n) = N1

mt+m=n ﬂl—}-iﬂ”ll—*»?z

(so that Q,(n) is the number of decompositions of n inio two primes or two powers
of primes). Here again, N,(n) and @,(n) are asymptotically equivalent; the diffe-
rence between them is indeed of lower order than errors which we are neglecting
in any case; but there is something to be said for taking the latter as the basis
for comparison, when (as is inevitable) the values of » are not very large.

In the table the decompositions into primes, and powers of primes, are
reckoned separately; but it is the total which is compared with ¢(n). The value
of the constant 2C, is 1.3203. It will be seen that the correspondence between
the calculated and actual values is excellent.

''1e., p. 242.
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Table 1.

n @(n) oln) | @(n):p(n)
30=2.3.5 6+4 =10 22 0.45
32 = 2° 4+ 7 =1I 8 1.38
J4=2.17 7+6 =13 9 I.44
36 = 2% 3? 848 =16 17 0.94
210=2,3.5§.7 42 + 0 =42 49 0. 85
214 =2, 107 1740 =17 16 1.07
216 = 2%, 3% 284+ 0 =128 32 0.88
256 = 2% 16+3 =19 17 I.10
2,048 = 21 50 + 17 = 67 63 1.06
2,250=2 3% ¢ 174 + 26 = 200 179 I.11
2,304 == 2%, 3% 134 + 8 =142 136 .04
2,306 = 2. 1153 67 + 20=287 69 1.26
2,310 =2,3.5.7.11 228 + 16 = 244 244 1.00
3,888 = 2%, 3% 186 + 24 == 210 197 1.06
3,898 =2.1949 99 + 6 = 10§ 99 r.ob
3,990=12.3.5.7.19 328 + 20 = 348 342 1.02
4,096 = 2'? 104 + 5§ =109 102 1.06
4,996 = 27,1249 124 + 16 = 140 119 1.18
4,998 =2.3.7%.17 228 + 20 = 308 305 1.01
5,000 = 2% 5% 150 + 26 =176 157 112
8,190 =12.3%.5.7.13 578 4 26 = 604 597 1.01
8,192 = 218 150 + 32 = 182 171 1.06
8,194 = 2.17. 241 192 + 10 = 202 219 0.92
10,008 = 2% . 3%. 139 388 + 30 =418 396 1.06
10,010 ==2.5.7.11.13 384 + 36 == 420 384 I.09
10,014 == 2. 3. 1669 408 4 8 =416 396 1.05
30,030=2.3.5.7.11.13 | 1,800 4 §4 = 1854 1795 1..03
36,960 = 2%.3.5. 7. 11 1,956 4 38 = 1994 1937 1.03
39,270==2.3.85.7.11.17 | 2,152 + 36 = 2188 2213 0.99
41,580 =12%2.3% 5.7 .11 2,140 + 44 = 2184 2125 1.03
50,026 = 2, 25013 702 + 8 =710 692 1.03
50,144 = 2%, 1567 607 + 32 = 706 694 1.02
170,166 = 2.3.79.359 3,734 + 46 = 3780 3762 1.00
170,170 ==2.5.7 .11.13.17 3,784 + 8 =3792 3841 0.99
170,172 = 22, 3% . 29. 163 3,732 + 48 = 3780 3866 0.98

39
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5. Other problems.

5. I. This last section is frankly conjectural, and is not to be judged by
the same standards as §§ 1—3.

The problems to which we. have applied our method may be divided roughly
into three classes. The typical problem of the first class is Waring’s Problem.
Our solution of this problem is not yet as conclusive as we should desire, and
we have not exhausted the possibilities of our method, even when allowance is
made for still unpublished work; we cannot at present prove, for example, that
every large number is the sum of 7 cubes or 16 biquadrates. But our proofs,
so far as they go, are complete.

The typical problem of the second class.is that considered in §§ 1—3. The
arguments by which we prove our results are rigorous, but the results depend
upon the unproved hypothesis E.

There is a third class of problems, of which Goldbach’s Problem is typical.
Here we are unable (with or without Hypothesis R) to offer anything approaching
to a rigorous proof. What our method yields is a formula, and one which seems
to stand the test of comparison with the facts. In this concluding section we
propose to state a number of further formulae of the same kind. Our apology
for doing so must be (1) that no similar formulae have been suggested before,
and that the process by which they are deduced has at any rate a certain
algebraical interest, and (2) that it seems to us very desirable that (in default
of proof) the formulae should be checked, and that we hope that some of the
many mathematicians interested in the computative side of the theory of numbers
may find them worthy of their attention.

Conjugate problems: the problem of prime-pairs.

5. 2. The problems to which our method is applicable group themselves in
pairs in an interesting manner which will be most easily understood by an example.
In Goldbach’s Problem we have to study the integral

1 dx
E;ﬁf(f(x))zg;,ﬁ’
where

1,
f(x) = z log @waw, Zi= Reiv g n ¥

1
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or

2x
(5. 20 o f J(Beiv) [ (Reiv) @ =mivdy.

The formal transformations of this integral to which we are led may be stated
shortly as follows. We divide up the range of integration into a large num-
ber of pieces by means of the Farey arcs &,,, ¥ varying over the interval

2p7 2pm

(—a———()’ s + 05,4 ) when 2z varies over &§,,. We then replace f(x) by the

appropriate approximation

1{g) T __elg) S
?(q) (f_«,:jp_) Plg) T ( _z2pn
Y by u, and the integral
Opa .
e —~niu
(5. 22) "q(-”?’)j ‘{*I‘*"’_""';du
0'p.q \%—zu)
by
el—iw
(5. 23) neg ( np)f zw)" =2aneé, (—np).

We are thus led to the singular series S,.
Now suppose that, instead of the integral (5. 21), we consider the integral

27
(5. 24) TRy = [ 1R [(Remimyeivay,
0

where now k is a fixed positive integer. Instead of (5. 22), we have now

Op,q @
ki '
eq(lcp)f ——I——~—e«—;—~—duweq(kp)] ¥L=7rneq(kp),
i (——z'u) (—- + iu) — + u?
0'p,q \n n —= p?

Acta mathematica. 44. Tmprimé le 16 février 1922, 6
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We are thus led to suppose that

(5. 25) TR o Tn B (100) e ()

1
when R=¢ %, n— .
The series here (which we call for the moment §',) is the singular series S,
with — % in the place of n. On the other hand

2n
J(R} = i—;} 2 log Fol Rweﬂi“ﬂ . 2 log @'R'Q'e—“ w?"‘n“ . eki‘w:d lp i Rk zaw_RZGf’
0

where
0y =log wlog (& + k)

if both @ and @+ k are prime, and ag = o otherwise. Hence we obtain

1
Zaﬂ,R‘“’m - RzS’z.

1
Here R—=e¢ ™, but the result is easily extended to the case of continuous ap-

proach to the limit 1, and we deduce!

(5. 26) Zaw cond',.

w<n

And from this it would be an easy deduction that the number of prime pairs
differing by %k, and less than a large number =, is asymptotically equivalent to

g
(log n)? 8.

We are thus led to the following
Conjecture B. There are infinitely many prime pairs
T, =w+k,

for every even k. If Pi(n) is the number of pairs less than n, then

n p—1
Pum) o2y T (p = 2),

where C, is the constant of § 4 and.p is an odd prime divisor of k.

I We appeal again here to the Tauberian theorem referred to at the end of 4. 2 (f. n. 1),
This time, of course, there is no guestion of an alternative argument.
? Note that §,=o0 if k is odd, as it should be.
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It will be observed that the analysis connected with Conjectures A and B,
which deal respectively with the equations
n=w+w, w=w+k,
is substantially the same. It is pairs of problems connected in this manner that
we call conjugale problems.
Numerical verifications.

5. 31. For k=2, 4,6 we obtain

; 20C,n

(5. 311) Py(n) oo {og n)*
20,n
(5' 312) P (n) -\(log n)g
. 40n
(5. 313) Py(n) oo ° flog n)*

Thus there should be approximately equal numbers of prime-pairs differing by 2 and
by 4, but about twice as many differing by 6. The actual numbers of pairs,
below the limits

100, 500, 1000, 2000, 3000, 4000, 5000

are
BT
9 A._ﬁ 41 i 63 i 86 ! 107 -!_“:ﬂ E
16 47 i l i i 241 ;

The correspondence is as accurate as could be desired.

5. 32. The first formula (5. 3r1) has been verified much more systematic-
ally. A little caution has to be exercised in undertaking such a verification.
The formula (5. 26) is equivalent, when k= z, to
(5. 321) 24(m)4(m+z)m202n-;

m<n
and, when we pass from this formula to one for the number of prime-pairs, the
formula which arises most naturally is not (5. 3r1) but!?

! This formula follows from (5. 321) in exactly the same way that

z(xyoo Lix

2 Alm) oo

mx

follows from
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Fode )
(5. 322) P,(n)cszzj (T(E;—z‘)?
indeed it is not unreasonable to expect this approximation to be a really good
one, and much better than the formulae of 4. 4. The formula (5. 322) is nat-
urally equivalent to (5. 311). But

de ~  n 21 3! 1
f(logw)**(log n)‘([+13é?+17c7g??+ P

and the second factor on the right band side is (for such values of n as we
have to consider) far from negligible.v It is for this reason that Brum, when he
attempted to deduce a value of the constant in (5. 311) from the statistical
results, was led to a value seriously in error.

We therefore take the formula (5. 322) as our basis for comparison, choosing
the lower limit to be 2. For our statistics as to the actual number of prime-
pairs we are indebted to () a count up to 100,000 made by GLAISHER in 18782
and (b) a much more extensive count made for us recently by Mrs. G. A.
StrEATFEILD. The results obtained by Mrs. Streatfeild are as follows.

I
o Bm |26 f (To‘;””x)? % Ratio

é E
100000 1224 1246.3 ] 1.018
200000 2159 , 2179.5 1. 009
300000 2992 3035. 4 1.01§
400600 3801 3846 .1 1,012
500000 | 4562 4625 .6 1.014
600300 |  $328 | 5381.5 1.010
700000 6058 6118.7 1 010
800000 ; 6763 6840 .2 I.0IX
900000 | 7469 7548 .6 1.01X

1000000 | 8164 8245 .6 I.010 }

1 The series is of eourse divergent, and must be -regarded as closed after a finite number
of terms, with an error termn of lower order than the last term retained.

? J. W. L. GLaisgEer, 'An enumeration of prime-pairs’, Messenger of Muathematics, vol. 8
(1878), pp. 28—33. Glaisher counts (1,3) as a pair, so that his figure exceeds ours by 1.
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5. 33. Similar reasoning leads us to the following more general results.
Conjecture C. If a, b are fixed positive integers and (a, b) =1, and N (n) is
the number of representations of n in the form

n=qw+bw,
then

Vi) =g a7

unless (n,a)=1, (n,d)=1, and one and only one of n,a,b is even.! But if
these conditions are satisfied then

2C, n p—1
N(n)eo ab (log n)*l-[ (p — 2)’

where C, is the constant of § 4, and the product extends over all odd primes v which
divide n,a, or b.
Conjecture D. If (a, b)=1 and P(n) is the number of pairs of soluilions of

aw —bw =1k
such that w' <n, then
P(n) =o( " )

tlog n)?

unless (k,a) =1, (k, b) =1, and just one of k,a, b is even. But if these conditions
are satisjied then

20, n p—1
Pn)eo 27 (logn)”ll(p——-z)’
where p is an odd prime factor of k, a, or b.
It should be clear that the theorems proved in §§ 1—3 must be capable of
a similar generalisation. Thus we might investigate the number of representa-
tions of n in the form

n=aw+hbw +cw'";

and here proof would be possible, though only with the assumption of hypo-
thesis B. We have not performed the actual calculations.

! This is trivial. If-» and e have a common factor, it divides b@’, and must therefore
be @', which is thus restricted to a finite number of values. If n,a, b are all odd, & or @'
must be 2.
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Primes of the forms m®+ 1, am?-+bm +c.

5. 41. Of the four problems mentioned by Landau in his Cambridge address,
two were Goldbach’s problem and the problem of the prime-pairs. The third
was that of the existence of an infinity of primes of the form m?+ 1.1

Our method is applicable to this problem also, We have now to consider
the integral

27
J(R) =£—rff(l€e"/') I(Re—iv)e—ivdy,
h

where f(x) is the same function as before and

3 () = Ex"“.
me1
The approximation for ¥(x)=I(Re~ %) on &,, is

1

3(Re—“iw)mfl/;§ﬁ(£+i( ~311£)) 2,
2 q n q
where .

Spq= é eq(h*p)

he=1
and §,, is the conjugate of S, ,: and we find, as.an approximation for J(R),

(q) e g
1 g 5 e~ thdu
e Y LG e (— e
4V751,2qqu(q) natal p),J (X_; ]/1 .

y ""5"p,q \ﬁ-—-lu) ;’: +1u

We replace the ntegral here by

0

f du = Van;
(—i) Vi
7 o +u

-—a0

! The fourth was that of the existence of a prime between n? and (n+ 1)? for every n>o.

The problewn of primes am?+ bm 4+ ¢ must not be confused with the much simpler (though
still difficult) problem of primes included in the definite guadratic form ax®+ baxy+ c¢y? in two
independent variables. This problem, of course, was solved in the classical researches of vg 1.a
Vantge PoussiN. Our method naturally leads to de la Vallée Poussin’s results, and the formal veri-
fication of them in this manner is not without interest. Here, however, our method is plainly
not the right one, and could lead at best to a proof encumbered with an unnecessary hypothesis
and far more difficult than the accepted proof.
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and we are led to the formula
(5. 411) J(R) Nil/z ans,
where S is the singular series

(5. 412) 8 = 2—’—’;% g €q (— D).

Repeating the arguments of § 5. 2, we conclude that the number P(n) of primes
of the form m®+ 1 and less than n is given asymptotically by

Vn
(5. 413) P(n) NEg_nS

5. 42. The singular series (5. 412) may be summed by the method of § 3. 2.
Writing
S=QAg=1+A,+ 45+,

there is no difficulty in proving that Aggy=A,4y if (g,¢)=1. Hence we
write !

S=IIX@*,

where

Aog=I+Ag+ Azt =1+ 45,

If w=2, Adg=o0, tg=1. fw>2,*

1 O
and
1 w—1
T — @1 g (P (—
Ag=—-—— ——q 4 Z (~~)ew\ )
(w—1)Vw i
1
(= =
o w—1 | wW—I\®

1 Even this is a formal process, for (5. 412) is not absolutely convergent.
2 See DiricHLET-DEDEKIND, Vorlesungen wber Zahlentheorie, ed. 4 (1894), pp. 293 et seq.
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Thus finally we are led to
Conjecture B. There are infinitely many primes of the form m®*+ 1. The
number P(n) of such primes less than n is given asymptotically by

Van

P(n)co Olog -

where

5. 43. Generalising the analysis of §§ 5. 41, 5. 42, we arrive at

Conjecture F. Suppose that a, b, c are integers and. a is positive; that (a,b,c)=1;
that a+b and ¢ are mot both even; and that D = b® — 4ac is not a square. Then
there are infinitely many primes of the form am®-+bm+c. The number P(n) of
such primes less than n is given asymplotically by

P(n) o 80_ l;/gnn ]I (p-— I)

where p is a common odd prime divisor of a and b, ¢ is 1 if a+b 15 odd and 2
tf a+b ts even, and

(5. 4321) c=]1 (I”ﬁrix(»zp&))'

It is instructive here to observe the genesis of the exceptional cases. If
(@, b, ¢)=d>1, there can obviously be at most one prime of the form required.
In this case y, vanishes for every @ for which w!d. If a+b and ¢ are both
even, am?®+bm + ¢ is always even: in this case y, vanishes. If D=Fk®?, then

4alam? +bm + ¢) = (2am + b)? — k2,
and
40w = (2am + b)? —

involves 2am +b4 k|4a, which can be satisfied by at most a finite number of
values of m. In this case no factor y, vanishes, but the product (5. 4321)
diverges to zero.

5. 44. 'The conjugate problem is that of the expression of a number n
in the form

(5. 441) n=am?®+bm+w.
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Here we are led to

Conjecture G. Suppose that a and b are inteyers, and a > o, and let N{n)
be the number of represeniations ol n in the form am*+bm+w@. Then if n,a,b
have a common factor, or if n and a + b are both even, or if b* + 4an is a square, then

{5. 442) N{n)=o0 (1(1/gnn) .

In all other cases

Goad N PRI} (=gt PA),

where p 18 a common odd prime divisor of a and b, and ¢ is 1 if a +b 1s odd and
2 if a+ b is even.
The following are particularly interesting special cases of this proposition.
Conjecture H. Every large number n is either a square or the sum of a prime
and a square. The number N(n) of representations is given asymptotically by

Van

bed T n
~ g n}lg(l“‘ﬁ?:z =)

There does not seem to be anything in mathematical literature corresponding
to this conjecture: probably because.the idea that every number is a square,
or the sum of a prime and a square, is refuted (even if 1 is counted as a prime)
by such immediate examples as 34 and 58. But the problem of the representa-
tion of an odd pumber in the form w + 2m? has received some attention; and
it has been verified that the only odd numbers less than gooo, and not of the
form desired, are 5777 and 5993.!

Conjecture I. Ewvery large odd number n is the sum of a prime and the double
of a square. The number N(n) of represéntations is given asymylotically by

(5 444) N(n)

5 4 voroo b i (= ()
kod

* By Srterx and his pupils in 1856, See Dickson's History (referred to on p. 32) p. 324.
The tables constructed by Stern were presorved in the library of Hurwitz, and have been very
kindly placed at our disposal by Mr. G. Pélya. These manuscripts also contain a table of
decompositions of primes ¢=4m + 3 into sums ¢ =p+ 2p', where p and p' are primes of the
form 4m + 1, extending as far as ¢ = 20983. The conjecture that such a decomposition is always
possible (1 heing counted as a prime) was made by Lagrange in 1775 (see Dickson, L ¢, p. 424).

Acta mathematica. 44. Tmprimé le 17 février 1922, 7
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5. 45 We may equally work out the number of representations of n as
the sam of a prime and any number of squares. Thus, for example, we find

Conjecture J. The numbers of representations of n in the forms
=@ +m]+m;, n=a+m}+m;+mj+m;,

are given asympltotically by the formulae

(b —1)* pi—1
(5. 451) Nn)co O cnﬂ . S i By
h ) 1:‘ {mod. 4) (P’—~p + I) v*3l(-£od_ ) (P-—~p——1-)
where
e -2 ( *ao o e
and
- +
(5. 452) N(n)N207(2n2H((pp i)pgp{_ II))
where
(5. 4521) l-l ( m)

Here p is an odd prime divisor of n, and representations which differ only in the
sigr or order of the numbers m,, m,, ... are counted as distinct.
The last pair of formulae should be capable of rigorous proof.

Problems with cubes.

5. 5. The corresponding problems with cubes have, so far as we are aware,
never been formulated. The problem which suggests itself first is that of the
existence of an infinity of primes of the form m?®+ 2 or, more generally, m® + &,
where k is any number other than a (positive or negative) cube.

Here again our method may be used, but the algebraical transformations,
depending, as obviously they must, on the theory of cubic residuacity, are
naturally a little more complex. As there is in any case no Question of proof,
we content ourselves with stating a few of the results which are suggested.

Conjecture K. If k is any fized number other than a (posilive or negative)
cube, then there are infinitely many primes of the form m*+ k. The number P(n)
of such primes less than n is given asymplotically by

1

(5. 51) P(n)Nl;fganH(1*7&;‘_2'_‘_~(—k)m}’
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where

w=1 (mod. 3), w1k,

and (— k), is equal to 1 or to — - according as — k is or is not a cubic residue of w.

~ Conjecture L. EKvery large number n is either a cube or the sum of a prime
and a (positive) cube. The number N (n) of representations is given asymplotically by

1
o nd 2
Vo e I (=525 00l
the range of values of @ being defined as in K.
Conjecture M. If k is any fized number other than zero, there are infinitely
many primes of the form I3+ m3+k, where | and m are both positive. The number

P(n) of such primes less than n, every prime being counted multiply according to
ils number of represemtations, is given asymplotically by

(A e
P(n)c\v(lrﬂ(i))) l_gyg"{in ! (I-——%)]}(I-{-AU),
3

where p and w are odd primes of the form 3r+ 1, plk, wik, and

A—2
Ao~ " a@=1)
if —k is a cubic residue of w,
gAigB~z
do="Gm—1"

wn the contrary case. The positive sign is to be chosen if

w=a +bg being that complex prime factor of w for which a==—1, b==0 (mod. 3);
the megative in the contrary event. And A and B are defined by

A=2a-—b,3B=0>, 4w =A%+ 27 B
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In particular, when k=1, the number of primes I*+ m®+ 1 is given asymp-
totically by

o 1((3"’))}~ ‘75%1} (I B ﬁ?m’ =)
3

primes susceptible of multiple representation being counted mulliply.

Conjecture N. There are infinitely many primes of the form k®+ 13 +m?,
where k, 1, m are all positive. The number P(n) of such primes less than n, primes
susceptible of multiple representation being counted multiply, s given asymptotically by

ro e - 2)

where @ is a prime of the form 3m +1, and A has the meaning explained under M.

Triplels and other sequences of primes.

5. 61. It is plain that the numbers @, @ +2, @+ 4 cannot all be prime,
for at least one of the three is divisible by 3. But it is possible that
W, T +2,@+6 or W, ®+ 4, w+6 should all be prime. It is natural to enquire
whether our method is applicable in principle to the investigation of the
distribution of triplets and longer sequences.

The general case raises very interesting questions as to the density of the
distribution of primes, and it will be convenient to begin by discussing them.

We write
(5. 611) olx) = lim (e (n + ) — u(n)),

" — ©

so that g(x)=g([%]) is the greatest number of primes that occurs indefinitely
often in a sequence n-+1,7n+2, ..., n+[x] of [x] consecutive integers. The
existence of an infinity of primes shows that g(z) > 1 for x> 1, and nothing
more than this is known; but of course Conjecture B involves g(z) > 2 for x> 3.
It is plain’ that the determination of a lower bound for ¢(x) is a problem of
exceptional depth.

The problem of an upper bound has greater possibilities. We proceed to
prove, by a simple extension of an argument due to Legendre’,

! See Landau, p. 67.
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Partitio numerorum.

Theorem G. If ¢>o then
(x> 2 = 2, (&),

where C is Kuler’s constant. More generally, if N(x, n) is the number of the integers
s n+[2] that are not divisible by any prime less than or equal lo

n+1,n.—+—2,..
o (@> 2,(e)).

log x, then
i TR )
o(x) = lim N{(x, n)<(1+s)e'cl~ oz

., [¢], not divisible

n—w

It is well-known that the number of the integers 1,.2,
«vy Py, 18

by any one of the primes p,, p,,

-3+ 22

Y23
where the i-th summation is taken over all combinations of the » primes 7 at

Since the number of terms in the total summation is 27, this is
1 I
lr— )+ 0(27).
=g +o

=

I— —

Y Y
~3¥y —~+02v=4
y 2 Dr 2 7 Ps (@) =y D PD:
.y Py to be the first » primes, write n-+x and n

We now take p,, p,, .
successively for y, subtract, and take the upper limit of the difference as n— .

We obtain
o(x)éxn (1—-%) + 0(2").
re=} T
But
I e—C
G
Py p gy

as y—o.! If we take y =log x, and p, to be the greatest prime not less than y,

we have
, z
’V<pq,i 10g x, 2"=O(W)!
T (2> %, (2)),

, -C
o(x)<{r+e)e fog log #

the desired result.

! Landaa, p. 140.
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An examination of the primes less than 200 suggests foreibly that
¢(z) <7 (2) (x22).

But although the methods we are about to explain lead to striking conjec-
tural lower bounds, they throw no light on the problem of an upper bound.
We. have not succeeded in proving, even with our additional hypothesis, more
than the »elementary» Theorem G. We pass on therefore to our main topic.

5. 62. We consider now the problem of the occurrence of groups of primes
of the form

n,nt+a,n ta, ...,n+an,

where a;, a,, ..., an are distinct positive integers. We write for brevity

() = QA (®) AT+ a) ... AT+ an)2®.
W=2

Then, if (h, k) =1, we have

(5. 621) 1" fr (12 er(h)) = X, AW A(W +a,) ... AT +ap)r?Tt e, (wh)

2
— 5%]24(1;;) o AT+ Ama) 1 €T P e (wh) . X A (W, T e T il
¢
2.“ i . 2hx
e s

0

If =2 Zm +0, r—1, §—0, aud 0 is sufficiently small in comparison with
1 —r, then
f(re“i'l’) o0 -I——':/%%):T— s
where
g
9 ¢(q)

Let us assume for the moment that

!
s tren oo g (B,

if Y= 7;, +40,r—1, and @ is sufficiently small. Then our method leads us to write
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23] . 2hw .
0

2, h amp a0
NE/‘ g'""'l(q % q znf(x——rew)(x———re"f’)

r9a

tp.q
oo Yo
oo - }‘_./(q)gm_](quk) ;
on replacing the integral by one extended from — = to n. Thus (5. 621)
suggests that
(5. 622) fm(r) 0 I ),

where g,, is determined by the recurrence formula

(5. 623) gm (%) = Ez(q) gm—1 (% + —]’f) e(“_"‘ql’)
and
(5. 624) 0 (§) = 20

From this recurrence formula we obtain without difficulty

(5. 625) 9 (0) = S =3, I]xq»x@)e(za”")

PLgi, ..., Pm>9m 'r=-1 r=1

where ¢, runs through all positive integral values, p, through all positive values
less than and prime to ¢,, and @ is the number such that

P P P Pm
B ¢ JERY SRR i P, =1,
@ ¢ ¢ qm .

If we sum with respect to the p’s, we obtain a result which we shall write in
the form

(5. 6251) Sw= D A(g, s - - -, )

gL, @2 .- 4m

We shall see presently that the multiple series (5. 6251) is absolutely con-
vergent.
For greater precision of statement we now introduce a definite hypothesis.
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Hypothesis X. If m>o, and r—1, then

S
(5' 626) fm (r) oo I—:?’
where Sy, 18 given by (5. 625) and (5. 6251).
Our deductions from this hypothesis will be made rigorously, and we shall
describe the results as Theorems X 1, X 2, ...
5. 63. From (5. 626) it follows, by the argument of 4. 2, that

x
(5- 631) P(x;0,a, Ay o v oy am)NSm(TOW’
as x —®; where the left-hand side denotes the number of groups of m + 1 primes
N, N+ G, ..., N+ am of which all the members are less than x.

We proceed to evaluate Sp,. In the first place we observe that A(q,,¢,,..., ¢m)
is zevo if any ¢ bas a square factor. Next we have

(5 632) A(Q1 q,n Q'zq'zr st QmQ'm)=A(4n Qa2 - - - qm) A(q'n q’2> tee q’m)’
provided (g, ¢'s) =1 for all values of r and s. For, if we write

1_’[_{_ 2{1 . prq'r +'7)'rQr - Pr

LR N T

¢ 9 qrqs Gr

so that q,=g¢,q», and suppose that p, and p', run through complete sets of
residues prime to ¢, (or ¢;) and incongruent to modulus g, (or ¢',), then p, runs
through a similar set of residues for modulus g,. Also (@, @)=1 and so
(PQ +P'Q, Q@)=1. Hence, since :

p_P P _PQ+PQ
w e @ Qo

the @ associated with 2%’

- is QQ'. Since x(g¢) = 2(a)2(¢) if (g,¢) =1, (5. 632)

r

follows at once.

Assuming then the absolute convergence, more conveniently established
later, of the series and the product, we have

(5. 633) Sm= ZA(QU%, cos @) = N X (W)= Xp(®) = N X (w5 a4, ..., am),
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where

(5. 634) X(@m)=1 +21A(m’, I,I,..., 1)+ 2244(@’,’@’; I, ..., I)4 "
+2rA(q;r, @ w,... )+ +d4dw,w @, ..., ®),

and where Er is extended over all A’s in which r of the m places are filled by

®'s and the remaining m —r by 1’s.
Our next step is to evaluate the A4’s corresponding to a prime w. Writing

z = (W)= _E: » we have first, when only one place, say the first, is filled
by a @,
=%, ¢:=1I(r>1), pp=0(r>1), @ =w,
and so
(5. 635) Alw,1,1,...,1)= (x(fm’))zzew(a,p) = xlca(a,).

(v,@)=1

When »>1 places, say the first r, are filled by @’s, we have similarly

A@, @, @, ... 1)=a" Dealap + - +ap)2(Q),
P2 Dy

where the p’s run through the numbers 1,2, ..., @ —1, and @ is determined by

., P_pitpte-tpr
(P: Q) "_ 1’ Q m,

Clearly
@=1(p=0(mod. ®)), Q= w (X pao(mod. @)).
Hence

(5. 636) A(w,w,w, ..., 1)=x’+1[ Zem(iasps)+
o,

i, y  s=1

+ é%l(—'%g(ﬂ? 2 ew ( 203 Pa)]

prbpet- - =0 s=1

r
— o[ [ostad— w3 ew(Sam)].
s=1 it =0
Acta mathematica. 44. Imprimé le 17 févriev 1922 8
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Now

B=3 ea (Qa.p:)

ﬂ1+P2+ v v z==()

is evidently a function of @, a,, ..., a, which is unaltered by a permutation of
a,,...,a,. We denote it (dropping the reference to w) by Bn(a,,qa,, ..., a,),
the suffix m being used to recall that a,,a,,...,a,, or rather the a’s that

replace them in the general case, are selected from a,, a,, ..., an.
Then
(5-637) B’"(al’az""7ar)=( 2 -— 2 )ew(a2pz+"'+ﬂrpr“‘(h(p2+"‘+pr))
23180y By 2bpat =0

= Zew((az_ax)pz"”"' +(ar—a,) pr) — ze’w((aa'_az) Pat -+ (Gr—ay)pr) + -
P2y Py s Py

= l!l'cm(as'“ax)“ﬂ(?m(as-—az)-]-

3=2 s=3

Here we are supposing r>2. We shall adopt the convention B,(a,) = o.
5. 64. We now digress for a moment to establish the absolute convergence
of our product and multiple series. We have

(5. 041) colb)=w—1 (w|k), calkl)=—1 (®+Fk).

Hence, when @ is large, every ce occurring in (5. 635), (5. 636), or (5. 637)
is equal to —x.? It follows that

|A(w,w,w, ..., 1)|< Kx2<—§§ (r=>1);
and so, since A(g,,q,,...) is the product of A’s each involving only a single
prime @, that the multiple series and the product in (5. 633) are absolutely
convergent,.
5. 65. Returning now to X(w), we have, for r>1,

7
Alw,w, w,...1)=ga"t! (Hcﬂ(as)""m‘Bm(an Qyy ooy ar))’
§=1

the result being true for r=1 in virtue of (5. 635) and our convention as to
Bn(as). Hence

1 Tt is here that we use the condition a,%as.
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(5. 651)  Xm(@) =1+ a1 [[cata) — @ a4 3, Bulasa, ..., a)

r=1 gl r=2

=1+ x(ﬁ (x +xcw(a,))——1) —ﬁmi 2" Cm,»

rel r=2
= Y@ — @2 L,

say, where

(5. 652) Conyr = D, Bmlay, 0y, . . ., @),

the summation being taken over all combinations (without reference to order)
of a, ..., am taken r at a time.
Now

(5.653) Ymp—(1T—2)Yp=1— x—(x—x)2+xﬁ(1+x6a(ar))(1 +xCw (@m+1) —1+2)

re=l

— (1 — ) + 22(x + colame)) [] (1+ wew(ar).

re=1

Also
7
Consrr = Cor + Z Blams1, 84,85, ..., ar—1) (r2>2).

! . .
Here denotes a sum taken over the combinations of a,,a., ..., 8m, r—1I at
1 b

a time; and the equation holds even for r =m + 1 if we interpret Cm m4+1 as zero.
Hence, by (5. 637),

0m+11"' = Cm,r + El(ﬂ ca(as —am41) — Bm(a,, a,. ..., ar-—l))

‘se=l

r
= Om,r + le] cw (as —dm +1) - Om,r——l;

s=1
and therefore
m4-1 m+1 'T-—l m+1
(5. 654)  Zmsr= 22" Comsrr="2m+ Qa7 X [[co (@ — ams1) — Lo —
re=g r=Q s=1 re2

= (1 —2) Zm+x(ﬁ(1 + zcw(ar — Ane1)) ——I).

y=1
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Using (5. 651), (5. 653), and (6. 654), and observing that x(1 —x) = — wx?, we
obtain

(5. 655) Xoms1 (@) — (1 —2) Xon(®) = 22 (1 + carlam2)) [ (1 + zew(ar) —

r=1
——'m’x*l] (1 +zew (@, — Am+1))-
r=1
To this recurrence formula we add the value of X, (@) for m =1, viz.
(5. 656) X, (@ =1+ A4(®)=1+2cw(a,).

5. 66. We can now deduce an exceedingly simple formula for X, (®), viz.

(5. 661) Xnfa) = (2] 2=

where

(5. 662) Y=V =v(G;0,8,,0;,, ..., An)

s the number of distinct residues of o,a,,a,, ..., an (mod. w).

This is readily proved by induetion. Let us denote the right hand side of
(3. 661) by X'm; and let us consider first the case m=1.

If a,=0 (mod. @) we have v=1, cw(a,) =w~—1; if a,+0 we have v =2,
cw(a,) =—1. In either case X, =X',.

Now suppose the result true for m, and consider X,,;;. There are three
cases:

(i) @msa=o0 (mod. ®@). Here

(o}
Vms1= Vm, X'my1= e Xm=(1—2)X's.

On the other hand 1 + co(am41) = @, co(a, —am 1) = cw(a,); the right hand side
of (5. 655) vanishes; and so

Xann=0—2)Xpn=0—2) X'n=X'ny.

(i) amsr=an=o0 for some r,<m. Here again ¥mi1=7». On the one
hand we have, as before, X'\n41=(1—~2)X';,. On the other

I+ cw{@ms) =0, 1+ x6a(ay,—Amyt) =1 — 1 ca(0) = 0;

the right hand side of (5. 665) vanishes, and X,,,1= X'p41 as before.
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(iii) a,,,H%o, am“%a,,(rém). Here vpiy1=vm+1=2+1. Also all the ¢'s
concerned are equal to —r. Hence

Xpi1— (1 —2) Xpp = — @22 (1 — 2)™ = 2(1 — )™+,
or, since X, = X'y,
X1 =(1—2) . (1—2)™ (1 + (v — 1)Z) + 2(x — z)"+!
= (1 — )™ 1 +v2) = X'

This completes the proof.
We now restate our conclusions in a more symmetrical form.
Theorem X 1.! Let by, b,, . . ., by be m distinct integers, and P(x;b,, b,, . .., by)

the number of groups n+b,,n+b,,...... , &+ by, between 1 and z and consisting
wholly of primes. Then
(5. 663) P(x) oo G(b,, b,, ..., bn) Lin(x)

when x— o, where

(5. 664) Gs by - bm) =] ((wi)'m_w_y)’

w—1
@>2

v=v(w;b,b,, ..., bm) 18 the number of distinct residues of b,, b,, ..., by to mo-
dulus @, and

x

. du
Lig(x) =., Tog i
¥
Further
(5- 665) G(bubz, ---,'bm)'_—OmH(bnbz, “eey bm)
where
[ w \"~l@—m
(5. 666) Co=]I ((W_I) m-—x)’
T>m
w \mlg— @ —
G-667)  Hub b= [ {2 2= M (2=0).
T<m '>1D’IA

o> m
and A 1is the product of the differences of the b's.

! To avoid any possible misunderstanding, we repeat that these theoremns are consequences
of Hypothesis X.
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The change from o,a,,...,am to b,b,, ..., by is obtained by writing
n—=5b, for n and m for m+ x. The expression of G as the product of the con-
stant Cn. (depending only on m) and the finite expression H follows immediately
from the fact that v=m if w+4, w>m.

5. 67. There are plainly many directions in which it would be possible to
extend these investigations. We may ask, for example, whether there are
indefinitely recurring pairs, triplets, or longer sequences of primes subject to
further restrictions, such as that .of belonging to specified quadratic forms. We
have considered one problem of this character only, which is interesting in that
it combines those contemplated in Conjectures B and E. Is there an infinity
of pairs of primes of the forms m®+ 1, m®+3? The result suggest,ed'is as follows.

Conjecture P. There are infinitely many prime pairs of the form m® + 1, m? + 3.
The number of such pairs less than n is given asymptotically by

301/5 Il ’w‘

Q (r) o (log n)* log n)‘

11)‘>5

where v is 0, 2, or 4 according as neither, one, or boti vf — 1 and — 3 are quadratic
residues of w.

Numerical vertfications.

5. 68. A number of our conjectures have been tested numerically by Mrs.
StreEATFEILD, Dr. A. E. WrsTERN, and Mr. O. WeSTERN. We state here a few
of their results, reserving a fuller discussion of them for publication elsewbere.

The first of these numerical tests apply to conjectures E and P. In applying
such tests we work (for reasons similar to those explained in 4.4 and 5.32) not
with the actual formulae stated in the enunciations of those conjectures, but
with the asymptotically equivalent formulae

(5. 681) —C‘J LIPS C’ LiVn
; Vz log »
and
3 3 - v/
. C|-——""—c02C Li,Vn-
(5. 682) (n)N ]V& log 77 4 LVa

The number of primes less than goooooo and of the prime form m?+1 is
jor. The number given by (5. 681) is 302.6. The ratio is 1.o005, and the agree-
ment is all that could be desired.

The number of prime-pairs m®+ 1 and m?® + 3, both of whose members are
less than goooooo, is 57. The value given by (5. 682) is 48.9. The ratio is
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858. The numbers concerned are naturally rather small, but the result is perhaps
a little disappointing.

A more systematic test has been applied to the formulae for triplets and
quadruplets of primes, the particular groups considered being

w, wt2, Wto6; W, W+4, W6,
w, Wtz, w+6, w+8;, w, w+4, w+6, o+ 10.

The two kinds of triplets should occur with the same frequency. On the other
hand there should be twice as many quadruplets of the second type as of the
first. For o, 2, 6, 8 have 4 distinct residues to modulus 5 and o, 4, 6, 10 but
3, while for all other moduli the number of residues is the same; and the ratio
5—3: 5——4 is 2. The dctual results are shown in the following table.

Triplets.
x Py(x; 0,2,6,| $C, Li,(x) Ratio P,(x;0,4,6) Ratio |
10° 260 270.78 1.041 249 1.087
2. 10° 417 440.}1 1.057 425 1.037
3.10° -566 589 .89 1.042 588 1.903
4.10° 718 727 .43 1.013 748 0.972
5.10° 833 857 .10 1.029 881 0.973
6. 10° 950 980 .92 1.033 . 1008 0.973
7. 10" 1073 1100. 16 I.025 1133 0.971
8. 1_0"‘ 1195 1215, 64 1.017 1231 0.988
9.10° 1295 1327 .97 1.025 1331 0.998
10% 1398 1437 - 59 1.028 1443 0.996
Quadruplets.
x P,ix;0,2,6,8)| & C, Li,(x) Ratio  |P,(x;o0,4,6,10) 27 C, Li, (x) Ratio
10° 38 40. 41 1.063 8o 80.82 1.010
2.10° 52 61.18 i.177 124 122.3% 0.987
3.10° 70 78.62 1. 123 160 157 .24 0.983
4.10% 87 94 .28 1.084 194 188. 55 0.972
5. 10° 103 ro8. 73 1.056 219 217.50 0.993
6.10° 117 122. 36 1.045 239 244 . 71 1.024
7.10" 133 135 .29 1.017 263 270.59 1.029
8.10° 141 147 .69 1.047 28 295 .39 1.036
9.10° 156 159 . 64 1.023 299 319.29 1.068
10° 166 I71. 21 I.031 316 342.42 1.084 i
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Here C, and C, are the constants of Theorem X 1. The results are on the whole
very satisfactory, though there is a curious deficiency of quadruplets of the
seccnd type between 8coooo and 10000600.

5. 6g1. We return to the problems connected with the function

o(x) =lim (7¢(n + z)— = (n)). We shall adhere to the notation of Theorem X 1,

and shall suppose in addition that x is integral and that o <b <b,< - <bm,
It follows from Theorem X 1 that, if H(b,, b,, ..., bm)+o0, groups n+b,,n+b,, ...,
n+ by, consisting wholly of primes continually recur, and we shall say, when
this happens, that b,,b,, ..., b is a possible m-group of b’s. We say also that
the n+b,, ..., n+bm is an m-group of primes. If, in a possible group, m = o(z),
where &= b, — b, + 1, we shall call the group, either of primes or of b’s, a maxi-
mum group. A set of x consecutive positive integers we call an z-sequence;
and we say that the group n+bd,, ..., n+by is conlained in the {(bn—b, + 1)-
sequence b, <c¢ <bn, and that its length is b,, —b, + 1.

Theorem X 2. If b,,b,,..., b, have a missing residue (mod. @) for each
w < m, then these b’s form a possible group.

This is an immediate consequence of Theorem X 1, since v < w— 1 for @ > m.

Theorem X 3. Let M(x,n) be the number of distinct integers ¢, c,, .. ., Cy,
in the interval n<c<mn+x, which are not divisible by any prime less than or
equal to

e(x) =—o(x) + [?(%]Jr I,

and let
0, (z)= Ma\)x Mz, n).
{n
Then
o(z)=¢(x).

Let o(z,u) be the number obtained in place of ¢,(x) when the ¢(z) that
occurs in the definition of ¢,(x) is replaced by u. Clearly we have

(5..6911) elx, 1 —~1) >0, 1) 2 0(2)
and
(5. 6912) olz, u) > olr, u—1)— [%]—— I
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Further,
(5. 6913) t=9lz,u)<u
implies

o(w, 1) = o(z).

For let d,,d,, ..., d: be an increasing set of positive integers with the properties
(characteristic of a set of == g(z, i) such integers) that (a) there is an » such
that n+d,,..., n+d; are not divisible by any prime less than or equal to g,
and (b) d; —d,+1<2. Then n+d,, ..., n+d, form a ’possible’ group of b’s,
since they lack the residue o for every prime less than or equal to v. Hence
o(2) > 7 = go(x, 1), and so, by (5. 6911), o(z) = (x, w).

Next we observe that o(z, u) = o(x) for u =2z, since the inequality = < is
clearly satisfied in this case. Let now g, be the least u, greater than or equal
to ¢(x), for which g(x, 1t,) = ¢(z). Then g(x) <y, <z. We have then

(5' 6914) 9(”: .”o)=9(x)’ 9(x7!‘o_‘1)>9(x):
and so
Q(x’ fto—1) D1,
by (5. 6913). Thus
to Zelm, o —1) Lo, up) + [ﬁ] +1=p¢() + [?-] +1
Hy ey
X

<o+

] + 1 =¢(x).
Hence

0(@) = o(x, t,) > 0(, 0(x)) = 0,(%).

But it is evident that g,(z) > ¢(2), and therefore ¢,(x) = o().

It follows from the theorem that, in @ mazximum group of primes of length
%, the remaining numbers of the x-sequence are all divisible by primes less than or
equal to g(x). We shall see presently that (on hypothesis X) g(z) <o(x) +log
for large values of z.

5. 692. We consider now the problem of a lower bound for ¢(x). Let p,
denote the s-th prime.

Theorem X 4. Let r=1r(n) be defined, for every value of n, by

Pr 0 < Pra1-

Then Drs1, Prez, « - o Pren 18 @ possible n-group of b’s.
Acta mathematica. 44. Tmprimé le 28 avril 1922, 9
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For the primes less than or equal to n are p,,p,, ..., p, and the b’s lack
the residue o for each of them. k

From Theorem X 4 we deduce at once

Theorem X 5. If = Pran— Pre1+ I, pr <0< Priya, then

e(@)>mn.

As a numerical example, let n = 76501. We have puso; = 76493, T = 76507.
Hence
r = 7525, B+ r = 84026, Pptr = 1076503
x = 1076503 — 76507 + 1 = 999997 .
Thus
¢(1000000) > 76501 .

We may compare this with the numbers of primes in the first, second, and third
millions, viz.

78498, 70433, 67885.

Theorem X 5 provides a lower limit for ¢(x) when 2 has a certain form:
we proceed to consider the case when « is unrestricted.
Theorem X 6. We have

x
log x

o(x)>

for sufficiently large values of x.
When m is large
. m log log m
pm=m (log m + log log m) —m+ O (W“ .

Let

r=[ Yy (I log log y)]
(log y)* log y

Then we have, by straightforward calculations,

2\
- Y (I o 0(log log y) )

Tlogy\" logy log y
Take n=p,. Then

n+r=——y~—(1+0(]—0—g—l~o—g~y)2),
log y log y
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_ 1 loglogy)2
p,,+,——y(1 logy+0( log y )
T=Pptr — Pr+1+ I < Puyr— Pr

z loglogy2) 3 ¥y
vy + O oget) )<V =3 g

when y is large. Thus

Y, (y_(log log y)’)

e Y
e(@) 2 e(x) 2 n=p, logy (log y)® (log y)®

z
> .
log z

Since y is arbitrary, so is z, and the theorem is proved.

5. 693. We conclude our discussion of ¢(z) with an account of one or two
particular cases. For a given z it is, of course, theoretically possible to deter-
mine the maximum number of .integers in an a-sequence that are not divisible
by any prime less than z. On hypothesis X, this number is ¢(x). Thus
L. Aupry! has shown that 30 consecutive odd integers cannot contain more than
15 primes (or more than 15 numbers not divisible by 2, 3, 5, or 7). Thus
0(59)<15. On the other hand if we fake, in Theorem X g, n=15, r =16, we
see that the 15 primes from 17 to 73 give a possible group of #’s. Hence, on
hypothesis X,

0(59) 2 e(57) =e¢(73 — 17+ 1) > 15;

and so ¢(59)=15. The value of 7(59) is 17.

Similarly a 35-sequence cannot contain more than 1o numbers not divisible
by z, 3, or 5, but the yo primes from 13 to 47, and therefore the numbers o, 4,
6, 10, 16, 18, 24, 28, 30, 34, form a possible ro-group of b’s, so that ¢(35) = 10 ==
=7(35)—1. A striking example of a maximum prime group n+b,,...,n+b,,
corresponding to this group of b’s, is provided by n = 113143.

The best example of a close approach by () to z(z) occurs when z =gy.
Consider the z4 primes from 17 to 113. They are a possible group of &’s if they
have a missing residue for each prime less than 24. We have only to test 17,
19, 23, and we find that 17 lacks the residue 8, 19 lacks 1 and 11, and 23 lacks
3, 12, 16, and 22. Hence on hypothesis X, ¢(97)>24. On the other hand it

! L. E. Dickson, L ¢, vol. 1, p. 355.
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may be shown that a g7-sequence cannot contain 25 numbers not divisible by
2,3, 5 7, 11, or 13. Let us denote the range n<z<n+g¢6 by R,. There
is one and only one value of n, not greater than 2.3.5.7 =210, for which
R, contains 25 numbers not divisible by 2, 3,5,0r 4, viz. n =1x01. If then
n<z.3.5.7.11, and R, contains z5 numbers not divisible by 2, 3, 5, 7, or 11, %
must be one of the numbers 101 4+ 210 m (m=0,1,...,10); and on examination
it proves that we may exclude all cases but m = 10. Repeating the argument
we see that, if n<2.3.5.7.11.13, and R, contains 25 numbers not divisible by
2, 3, 5, 7, II, or 13, then n must be one of the numbers n = 2201 + 2310m
(m=o0,1,...,12). All these turn out to be impossible and, since any R, may
be reduced (mod. z2.3...13), it follows that no R, can contain more than 24
numbers not divisible by a prime less than or e'qua,l to 13. A fortiori it follows
that g{g7) < 24, and so {on hypothesis X) ¢{g7) =24. Since n{gy) =25, the dif-
ference o — 7 is here unity. Beyond z=g7 it would seem that ¢(x) falls further
below 7(x), at least within any range in which calculation is practicable.

Conclusion.

5. 7. We trust that it will not be supposed that we attach any exaggerated
importance to the speculations which we'have set out in this last section. We
have not forgotten that in pure mathematics, and in the Theory of Numbers in
particular, ’it is only proof that counts’. It is quite possible, in the light of
the history of the subject, that the whole of our speculations may be ill-founded.
Such evidence as there is points, for what it is worth, in the opposite direction.
In any case it may be useful that, finding ourselves in possession of an apparently
fruitful method, we should develop some of its consequences to the full, even
where accurate investigation is beyond our powers.

Postseript.

(1). Prof. Landau has called our attention to the following passage in the
Habilitationsschrift of Piurz ("Uber die Hiufigkeit der Primzahlen in arithmetischen
Progressionen und iiber verwandte Gesetze’, Jena, 1884), pp. 46-47: —

‘Ferner wiederholen sich gewisse Gruppierungen der Primzahlen mit gewisser
Regelmissigkeit, so ist z. B. die durchschnittliche Haufigkeit der Gruppen von
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je 2 Primzahlen, die in gegebenem Abstand aufeinanderfolgen, fiir die ungeféhre

Grosse x der Primzahlen, proportional ﬁ, wobei allerdings dieser Ausdruck je

nach dem gegebenen Abstand mit verschiedenen constanten Faktoren behaftet

ist, die H&ufigkeit einer Gruppe von 3 Primzahlen proportional —{3—:035 und so

fort..... Die nihere. Ausfilhrung dieser und andrer Gesetze ... werde ich ein
-andres Mal folgen lassen.

All of this is of course in perfect agreement with the results suggested in
our concluding section.

(2). We must add a few words concerning the memoirs of Stickel referred
to on p. 34. These have only become accessible to us during the print-
ing of the present memoir, and it is not possible for us even now to give any
satisfactory summary of their contents; but Stiickel considers the problem of
‘prime-groups’ in much detail, and it is clear that he has anticipated some at
any rate of the speculations of 5.6. The method of Stickel, like that of Brun,
rests qn the use of the sieve of Eratosthenes, followed by a heuristic passage
to the limit; but Stickel's problem is much more general, and he has gone much
further than Brun in the determination of the constants in the asymptotic for-
mulae. It seems to be the principal advantage of our transcendental method,
considered merely as a machine for the production of heuristic formulae, that
these constants are determined naturally in the course of the analysis.

(3). We should also refer to a later memoir of Brun (‘Le crible d’Eratos-
théne et le théoréme de Goldbachk’, Videnskapsselskapets Skrifter, Mat.-naturv.
Klasse, Kristiania, 1920, No. 3). Brun proves, by elementary methods, (1) that
every large even number is the sum of two numbers, each composed of at most
g prime factors, (2) that the number of prime-pairs @, @ + 2, less than x, cannot
exceed a constant multiple of x(log x)—2.

Brun’s work enables us to make a substantial improvement in the elemen-
tary theorem G. Using the inequalities proved on pp. 32—34 of his memoir, we
can show that

e(w) < fffg-

(4). Prof. Landau has pointed out to us an error on p.g. It is not neces-
sarily true that Cp=o0 when y; is imprimitive: our argument is only valid when
@ is divisible by every prime factor of ¢.

The inequality (2. 16) is however correct. Suppose first that g=a? (1> o).
Our argument then holds unless @=1; in this case x; is the principal character and
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| Seq om) 7, (m) | =1 < V4.
m =1 -

This inequality is then easly generalised to all values of ¢. If ¢=g,¢,, where
(g4, g;)=1, then every y (mod. g) is the product of a y, (mod. ¢,) and a ¥, (mod.

¢,)- and it is easily proved that

| 2 ea (m) xim)| = | 2 (92) 1 (01) D (my) 2, (1) D eqa(m) 2, () |

Vg Vg, = Vg,

The conclusion now follows by induction.



