
SOME PROBLEMS OF 'PARTITI0 NUMERORUM'; III: ON THE 
EXPRESSION OF h NUMBER AS h SUM OF PRIMES. 

BY 

G. H. H A R D Y  and J.  E. L I T T L E W O O D .  
New College, Trinity College, 

OXFORD. CAMBRIDGE. 

~. Introduction. 

z . I .  It was asserted by GOLDBACH, in a letter to "EuLER dated 7 June, 

1742 , that every even number 2m is  the sum o / t w o  odd primes, ai~d this propos i- 
tion has generally been described as 'Goldbach's Theorem'. There is no reasonable 
doubt that the theorem is correct, and that the number of representations is 

large when m is large; but all attempts to obtain a proof have been completely 
unsuccessful. Indeed it has never been shown that every number (or every 
large number, any number, that is to say, from a certain point onwards) is the 

sum of xo primes, or  of i oooooo; and the problem was quite recently classified 
as among those 'beim gegenwiirtigen Stande der Wissensehaft unangreifbar'. ~ 

In this memoir we attack the problem with the aid of our new transcen- 

dental  method in 'additiver Zahlentheorie'. ~ We do not solve it: we do not  

i E. LANDAU, 'Gel6s te  und ungelOste Probleme aus der Theorie der Primzahlverteilung und 
der Riemannschen Zetafunktion', l~'oceedings of the fifth Infernational Congress of Mathematicians, 
Cambridge ,  i9t2, vol. i, pp. 93-- io8 (p..ios). Th i s  address was reprinted in the Jahresbericht 
der 19eutscheu Math.-Vereinigung, vol. 21 (i912), pp. 2o8--228. 

We give here  a co,npte te  l is t  of memoirs concerned with the various appl ica t ions  of 
th i s  method. 

G. H. HARDY. 

I. 'Asympto t i c  fo rmulae  in combina to ry  analysis', Coml)tes rendus du quatri~me 
Congr~s des mathematiciens Scandinaves h Stockholm, I9,6, pp. 45---53. 

2. 'On the expression of a number as the sum of any number of squares, and in 
par t icular  of five or seven', Proceediugs of the National Academy of Sciences, vol. 4 (19x8), 
pp. 189--193. 
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e v e n  p r o v e  t h a t  a n y  n u m b e r  is t h e  s u m  of  x o o o o o o  p r i m e s .  I n  o r d e r  t o  p r o v e  

a n y t h i n g ,  we  h a v e  to  a s s u m e  t h e  t r u t h  of a n  u n p r o v e d  h y p o t h e s i s ,  a n d ,  e v e n  

on  t h i s  h y p o t h e s i s ,  we  a r e  u n a b l e  t o  p r o v e  G o l d b a c h ' s  T h e o r e m  i t se l f .  W e  show,  

h o w e v e r ,  t h a t  t h e  p r o b l e m  is n o t  ' u n a n g r e i f b a r ' ,  a n d  b r i n g  i t  i n t o  c o n t a c t  w i t h  

t h e  r e c o g n i z e d  m e t h o d s  of t h e  A n a l y t i c  T h e o r y  of N u m b e r s .  

3. '8ome famous problems of the Theory. of Numbers, and in particular Waring's 
Problem' (Oxford, Clarendon Press, 192o, pp. 1--34). 

4- 'On the representation of a number as the sum of any number of squares, and 
in particular of five', Transactions of the American Mathematical Society, vol. 2x (I92o), pp. 
255--z84. 

5. 'Note on Ramanujan's trigonometrical sum c~ (n)', .proceedings of the Cambridge 
.philoso1~hical Society, vol. 2o (x92I), pp. 263--z7I. 

G. H. HxRDY and J. E. L1TTLEWOOD. 

Z. 'A new solution of Waring's Problem', Quarterly Journal of Irate and aFflied 
mathematics, vol. 48 (1919), pp. ZTZ--293. 

2 .  'Note on Messrs. Shah and Wilson's paper enti t led:  On an empirical formula 
connected with Goldbach's Theorem', .proceedings of the Cambridge Philosophical Society, 
vol. 19 (1919), pp. 245--z54. 

3. 'Some problems of 'Parti t io numerorum';  I: A new solution of Waring's Pro- 
blem', .u van der K. Ge.sdlschaft der Wissensehaften zu G6ttingen (i9zo), pp. 33--54. 

4. 'Some problems of 'Partit io numerorum'; I I :  Proof that  any large number is the 
sum of at most 2x biquadrates', Mathematische Zeitschrift, voh 9 (i92i), pp. 14--27. 

G. H. HARRY and S. Is 

L 'Une formule asymptotique pour le hombre des parti t ions de n', Comptes rendus 
de l'Acad~mie des Sciences, 2 Jan. I9x7. 

2. 'Asymptotic formulae in combinatory analysis', .Proceedings of the London Mathem. 
atical Society, ser. 2, vol. 17 (xg18), pp. 75~II  5. 

3. 'On the coefficients in the expansions of certain modular functions', Proceedings 
of  the Royal Society of London (A), vol. 95 (1918), pp. x44--155. 

E. LANDAU. 

I. 'Zur Hardy-Littlewood'schen L6sung des ~u Problems',  Nachrichfen 
yon der K. Gesellschaft der Wissenschaften zu G6ttingen (192I), pp. 88--92. 

L. J. MORDELL. 
I. 'On the representations of numbers as the sum of an odd number of squares', 

Transactions of the Cambridge .philoso2hical Society, vol. z2 (1919), pp. 36t--37z. 

A. OSTROWSKI. 

L 'Bemerkungen zur Hardy-Littlewood'schen L6sung des Waringschen Problems', 
Mathematische Zcitschrift~ vol. 9 (19zI), PP. 28--34. 

S. RAMANUJAI~. 

z 'On certain trigonometrical sums and their  applications in the theory of num- 
bers', Transactions of the Cambridge Philosophical Society, vol. zz (!gx8), pp. z59--276. 

N. M. SHA- and B. M. WILSOn. 
L 'On an empirical formula connected with Goldbach's Theorem', .proceedings of 

the Cambridge Philoserphical Society, vol. 19 (I919), pp. 238--244. 
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Our main result  m a y  be s tated as follows: i / a  certain hypothesis (a na tura l  

generalisat ion of R iemann ' s  hypothesis  concerning the zeros of his Zeta-funct ion)  

is true, then every large odd number n is the sum o/ three odd primes; and the 

number o/representations is given asymptotically by 

- -  n ~ 

where p runs through all odd prime divisors o/ n, and 

(i. ~2) C ~ - ~ H  i + (,~2_z , 

the product extending over all odd primes v~. 

Hypothesis R. 

x . z .  We proceed to explain more  closely the na tu re  of our  hypothesis .  

Suppose t h a t  q is a posit ive integer,  and t h a t  

h = ~(q) 

is the number  of numbers  less than  q and prime to q. We denote  by  

x (n). = z k ( n )  (k  - I ,  2 . . . . .  h )  

one of the h Diriehlet 's  ' charac te rs '  to modulus  7 1: ZL is the 'p r inc ipa l '  character .  

By  ~ we denote  the complex number  con juga te  to  •: Z is a character .  

By  L(s,  Z) w e  denote  the funct ion defined for a > i by  

L(s) = L(ct + it) = L(s ,  X) = L(s ,  gk) = ~. z(n) .  
~--t  n s 

n - 1  

Unless the con t r a ry  is s ta ted  t he  modulus  is q. We wri te  

/~(s)  = L ( s ,  ~). 
By  

~-=fl +ir 

Our notation, so far as the theory of L-functions is concerned, is that of Landau's 
Handbuch dcr Lehre yon der Verteilung der _Primzalden, vol. i, book 2, pp. 391 r seq., except that 
we use q for his k, k for his x, and ~ for a typical prime instead of 2. As regards the 'Farey 
dissection', we adhere to the notation of our papers 3 and 4. 

We do not profess to give a complete summary of the relevant parts of the theory of 
the L-functions; but our references to Laudau should be sufficient to enable a reader to find 
for himself everything that is wanted. 
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we denote  a typical  zero of L(s), those for which 7 ~ - o ,  f l < o  being excluded.  

We ca l l  these the non-trivial zeros. We wri te  N(T)  for  the n u m b er  of Q's of 

L(s) for  wh ich  o < 7 < T .  
The  n a t u r a l  extens ion of R i e m a n n ' s  hypothes is  is 

H Y P O T H E S I S  R*. Every Q has its real part less than or equal to ~.~ 
2 

We shall not  have  to  use the  full force of this hypothes is .  W h a t  we shall 

in fact  assume is 

H Y P O T H E S I S  R. There is a number 0 < 3 such that 
4 

~<o 

]or euery ~ o] every L(s). 
The  assumpt ion  o f  this hypothes is  is fundamenta l  in all our  work;  all the 

results o[ the memoir, so jar as they are novel, depend upon its; and  we shall not  

r epea t  i t  in s ta t ing  the condi t ions o f  our  theorems.  

W e  suppose tha t  O has its smallest  possible value,  In  any  ease O > I .  
= 2  

For ,  i'f q is a complex zero of L(s), ~ is one of /~(s). Hence  i - - ~  is one of 
L ( i ~ s ) ,  and so, by  the funct ional  equa t ion  s, one of L(s). 

Further notation and terminology. 

I .  3- We use the  following no ta t ion  th roughou t  the memoir .  

A is a posi t ive  absolute  cons tan t  wherever  i t  occurs, bu t  not  the  same 

cons tan t  a t  d i f ferent  occurrences.  B is a posi t ive cons tant  depending  on the  

single pa rame te r  r. O's refer  to the l imit  process n - ~  r the  cons tan ts  which 

t hey  involve being of the t y p e  B, and  o's are uniform in all pa ramete r s  except r. 
is a prime, p (which will on ly  occur  in connect ion  with n) is an odd 

pr ime divisor of n. p is an  integer.  If  q =-~,  p-----o; otherwise 

o < p < q ,  (p ,q)  = ~, 

(re, n) is the  grea tes t  common fac tor  of m and n.  By  m[n we mean tha t  n is 

divisible by  m l by  m ~ n the  con t r a ry .  

J / (n ) ,  tt(n) have the meanings cus tomary  in the  Th eo ry  of Numbers ,  Thus  

.d(n)  is log ~ if n =  ~ and zero otherwise:  ~(n) is ( - - I )  k if n is a p r o d u c t  of 

' The hypothesis must be stated in this way because 
I 

(a) it has not been proved that no L(s) has real zeros between ~ and I, 

(b) the L-functions as  ociated with impriraitive (uneigentlich) characters have zeros on the line a = o, 
t~aturally many of the results stated incidentally do not depend upon the hypothesis. 

8 Landau, p. 489. All references to 'Landau' are to his Handbuch, unless the contrary is stated. 
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k different prime factors, and zero otherwise. The fundamental function with 
which we are concerned is 

( l I �9 3 I)  /(Z) = 2 log f f  X '~r 

To simplify our formulae we write 

e(x) = e 2~I~, eq(x) = e (q) , 

Also 

(i, 3z) 

If Xk is primitive, 

(~ 33) 

P 

5 
Vk = v (Zk) = 2 eq (p) Xk (P) = 2 eq (m) Zk (m).' 

p m~l  

This sum has the absolute value ~ ~q. 

The Farey dissection. 

x. 4. We denote by  F the circle 

1 
(I. 4I) I x l = e - / / = e  " 

We divide F into arcs ~,q which we call Farey arcs, in the following manner. 
We form the Farey 's  series of order 

(I. 4 2 ) N = [ V n ] ,  

the first and last terms being o and _I. 
I I 

p' p" 
series, and ~ and ~ the 

]'p,q (q > i) the intervals 

We suppose that  -p is a term of the 
q 

adjacent terms to the left and right, and denote by 

I ~ I 

( I ) ( I i ,  i ) .  These intervals just  by ]'o,1 and ]'1,1 the intervals o ,~-~-~ and r - - N  + 

7,k(m) - -  o i t  (m, 2) > ~. 
Landau, p. 497. 
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fill up the interval  (o, I) ,  and the length of each of the parts  into which jp, q is 

divided by -pq is less than  q-NI and not  less than  . . . .  2qNI If  now the intervals 3"p,~ 

e~rc considered as intervals of var ia t ion o f  0 ,  where 0 ~ - a r g  x, and  the  two 
2~v 

extreme intervals joined into one, we obtain the desired dissection of F into arcs ~p, ~. 

When we are s tudying  the arc ~p,q, we write 

2pal 
(L 43) x f f i e  �9 X f f i e ~ ( r ) X ~ e q f ~ ) e  - r ,  

(~, 44) Y ~ ~7 + iO. 

The whole of our  work turns  on the  behaviour  of /(x) as ]x~ - - . i ,  , / ~ o ,  and 

we shall suppose th roughout  tha t  o < ~ < I--. When x varies on ~p,g, X varies ~ Z  

on a congruent  arc ~p,g, and  

0 -~ - -  (arg - 2 p,-r~ 

varies (in the inverse direction) over an in terval  --O~v,g~O<Op,~. Plainly Op, ~ 

/ 2Y'g" ~T 
and 0~,~ are less t han  ~ and  not  less than  ~_g, so t h a t  

q = Ms x (Op,4, O'p,q~ < : N "  

In all cases Y - ' =  (~i ~- i0) - :  has its principal value 

exp ( ~ S  log (~ + i0)),  

wherein (since ,/ is positive) 

- -  ~ rc < ~  log (7 + i 0 )  < _I ~:r. 
2 2 

By Nr(n) we denote  the number  of representat ions of  n by a sum of r primes, 

a t t en t ion  being paid to order,  and repeti t ions of the same prime being allowed, 

so t h a t  

The distinction between major and minor arcs, fundamental in our work on Waring's 
Problem. does not arise here. 
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By v~(n) we denote the sum 

r,.(n) ~ ~ log "~ log ~ . . .  log W~, 
~tO-t +,(ff2,.r . . .  + ~Tr-- n 

(I. 46) 

so thai  

(i. 47) *,(n) x" = (I(,)) ' .  

Finally S. is the singular series 

( I .  4 8 )  

flo r 
= ~'  l t ' ( q ) t  e I _  8, q~.ll~p(q) ! ~, n). 

2. P r e l i m i n a r y  l e m m a s .  

2. I. L e m m a  r.  I1 ~ ---- ~ ( Y)  > o then 

(2. II) l (x )  ~ l , ( x )  + h ( x ) ,  

where 

(2, 12) f ,~)  = 2 l ~ ( . ) . . _  X log .~(xn~,+ x~r~+ .. -), 
(q, .) > 1 

(2. ~3) 

2 + i ~  

h(x) =2,~i 
2 - - * a e  

Y-"  has its principal value, 

(2. I4) 
h t ~ ,~ L k(s) 

z ( ~ )  = ,~,~k ~ ,  
k - - 1  

C~ depends only on p, q and 7~k, 

(2. I5)  

and 

C, =---- 
~(q) 
h 

(2. 16) ICk[__<_?- 
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We have  

h (:~) = 1(:~) - 1, (x) = ~ ~ ( n )  x* 
(q,  n )  - -  1 

l _<_ i<q ,  (q,$*} -- 1 l - 0  

2 + i o o  

t ] 'y_sF(s)( lq+])_sds ,  = ~. e, (pi) ~ _4 (z ~ + j) 
i l 2 - ' i ~  

where 

2 + i Q o  

--2~il /Y-~F(s)Z(s)ds, 
2 - - i ~  

Since (q, ]) = I ,  we have  1 

~ J / ( l q  + ?') 
(~ :Cff ; 

h I ,~ . . . .  L%ts~;'" 
h ~ z k ~ 7 ~  

k ~ l  

and  so 

4"-  L'z,(s), Z(s) = z~(;k 

where 

Ck-- hi ~_~eq(pT)Zk(]) 
j - 1  

Since ] 3 , ( j ) =  o if (q, j ) >  I ,  t h e  condi t ion (q, i ) =  I m a y  be omi t t ed  or re ta ined  

a t  our  discret ion.  

Thus  ~ 

I 

l_<j<__q, (q,j) ~ 1 

I ~[t (q )  
= - ~ ~ e~ (m) h 

l=<=m=<= q, (q, ra)-- I 

t L a n d a u ,  p. 421. 

' L a n d a u ,  pp .  572--573.  
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Again,  if k >  I we  h a v e !  

j - - 1  m--1 

If  Zr, is a pr imit ive  character ,  

I C k l = ? -  

If ~ is imprimitive, it beIongs to Q =  where d > I .  The .7,k m)has  the 

period Q, and 

QI d - 1 

m--1 n ~ l  l - -0 

The inner sam is zero. Hence Ca = o, and the proof of the lemma is completed, n 
2. 2. Lemma z. We have 

1 

[/,(x) l < A(log (q + I))a~ "-~ (2.  21)  

W e  have 

It(x) ~- ~. .4(n)xn--~.~ log w ( x ~ +  x ~ a +  -. - ) = / 1 , 1 ( x ] - - / , , 2 ( x ) .  
(q, n) > 1 Z'J 

co  

l/la(X)l< - ~ log ~'~I~U 
z~[q r - - I  

co  ao  

< A log (q + I) log q ~1.12"< A (log (q + ~)) '~  e-,," 
r--1 r ~ l  

1 

<A(log(q+I))Alog <A (log (q + I))A~ 

B u t  

Landau ,  p. 485. T h e  r e su l t  is s t a t ed  t h e r e  on ly  for  a p r i m i t i v e  cha rac t e r ,  bu t  t he  p roof  
is va l id  a lso  for  an  i m p r i m i t i v e  c h a r a c t e r  w h e n  (p, q) ---- i .  

Landau ,  pp .  485, 489, 492 . 
See t h e  add i t i ona l  n o t e  a t  t h e  end .  

Acta mathematlva. 44. Imprim6 le 15 f~vrler 1922. 
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Also 

and so 

2 log ~" < A V~, 

I ll,~(z) I< ~ log ,~1~1 ~" < A(, --I~1)~ V~l ~,1" 
r_~2, ~* n 

1 1 

< A(I- - IxI ) -~  < A ~  ~ 

From these two results the lemma follows. 

2. 3. Lemma 3. We have 

(2. 31) L ( 8 )  8 - - 1  ~ " -  2 8[ - -  0 ' 
o 

where 

F' (z) 
~(z) = r--(z~' 

the ~'s, b's, b's and b's are constants depending upon q and Z, a is o or 1, 

(2. 32) 
and 

(2. 33) 

B,=I,  ~ = o  (k>I), 

o ~ b  < A log (q + i) .  

All these results are classical except the last3 

The precise definition o r b  is rather complicated and does not  concern us. 

We need only observe that  b does not exceed the number of different primes 

that  divide q,~ and so satisfies (2. 33). 

2. 41 . Lemma 4" I [  o < ~ < ~, then 

h 

(2. 4ii) /(x)-- + ~CkG~ + P, 
k--1 

where 

(2. 4r2) Ok= ~ F ( q )  Y-~, 

t Landau, pp. 509, 5to, 5x9. 
Landau, p. 511 (footnote). 
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(2. 413) 
h I 1 1 

k = l  

(2. 414) 0 - -  arc t an  I~l" 
We have, from (2. x3) and (2. x4), 

(2. 4z5) 

say. But  I 

2+iQo 

z / r - ' r ( , ) Z ( s l d 8  h(:O = 2 ~--~ 
2-- ioo 

2 + i a o  

= ~ Y - . t O )  L--~ a ,  = ~e,/~k(x).  
k -1  k - I  

2--iQa 

2 + i ~  

X f , L'(8) ~ ~r(r y-o (2.416) 2•i L(8) _ _  y -  F ( s ) ~ d s = - - - V +  R + + 

2 - - i ~  P 

where 

1 

f r-.r(.)n'(')- i-~(8) aS'  
1 
4 

L! _. , (s) 
R- - {Y 1 (8)-~7)} o, 

f ~/(s)j0 denoting generally the residue of /(s) for s = o. 
~ o w  ~ 

L'(s) , zr , ~ , ,  log ~ ~ ~,, log w'~ 

2 7 ~ -  --2 ~v 2 L(~-~) '  

where Q is the divisor of q to which Z belongs, c is the number of primes which 

divide q but  not Q, ~r,, z ~ , . . ,  are the primes in question, and ,~ is a root of 

unity. Hence, if a i = - - - ,  we have 
4 

' This application of Cauchy's Theorem may be justified on the l ines of the classical 
proof of t h e  'explicit  formulae'  for ~(x) and =(x): see Landau, pp. 333--368. In  this  ease the 
proof is much easier, since Y--sF(s) tends to zero, when I t[-~Qo, like an exponent ial  e - a I r |  
Compare pp. x34--*35 of our memoir  :Contributions to the theory of the R iemann  Zeta-function 
and the theory of the dis tr ibut ion of primes',  Acla Mathematica, eel. 41 0917), pp. Ix9--I96. 

Landau, p. 517. 
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(2. 417) 
L'(,) [ <A log g+ Ar log q+ A log ( I t l + 2 ) + A  

< A (log (~, + i)) a log (iti +2). 

I 
Again, if s = - - - + i t ,  Y = ~ + i O ,  we have 

4 
1 , Y,.o p(,.aro tao ). 

f r - , r ( s ) l < A l r l ~ ( I t t + 2 ) - ~ e x p -  ~-arctan ltl, 
1 

1 itl-  
< A I Y J ~  log(lt l  + 2) e-'~it~ 

and so 

(2. 418) 

1 
- - - + i n  

4 ! 7 _ _  ~ 
I I I' L'ts~ I Y l ! J t  ~e-~ 

1 0 
4 

1 1 

< A  (log (q + 1))a[ YI4d ~ 

2, 42. We now consider R. Since 

we have 

+ ---o (s--- o), 

---- A~(b+ b)--Cb--b) (A~+ A3 log Y) + Ct(a) + C~(a) log Y, 

where each of the C's has one of two absolute constant values, according to the 

value of a. Since 
1 

o < b < I ,  o < b < A l o g ( q + I ) ,  Ilog Y I < A l o g I - < A r ,  --2, 

we have 
1 

(2. 42x) IRl<albl +A log (q+ i):~ - ~  



(2. 422) 

(2. 423) 
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From (2. 415), (2. 416), (2, ~I8), (2. 42I) and (2. I5) we deduce 

h,k (~) = - -  y + G~ + P~, 

1 1 

[Pk[< A (log(q+ x))a ( ibl+v-~+l Y]'6 ~), 

1, (x) h Y 
k 

IPl<AV~(log(q+~))a ~ Ibkl+~ ~+llZl~O -~ �9 

13 

Combining (2. 422) and (2. 423) wigh (2. IX) and (2. 2i),-we obtain the result of 

Lemma 4. 

2. 5. Lemma s .  
character, then 

(2. 5~) 

where 

(2. 52I) 

(2. 522) 
Further 

(2.53) 

and 

(2. 54) 

I /  q > I and Zk is a primitive (and there/ore non-principal a) 

a e b ,  s 
, 

a = a ( q ,  X) =a~,  
1 

w -  

] L ( x ) l = ~ q  2]L(o) l (a=x), 

1 
N - -  

IL(r ) l=2q 2lL'(o)l (a=o). 

- - o < 9 ~ ( ~ ) s  

L(I) I < A (log (q + I)) A . 

This lemma is merely a collection of results which will be used in the proof 

of Lemmas 6 and 7- They are of very unequal depth. The formula (2. 5I) is 
classical. ~ The two next are immediate deductions from the functional equation 
for L(s). s The inequalities (2. 53) follow from the functional equation and the 

i Landau, p. 480. 
Landau, p. 507. 

8 Landau, pp. 496, 497. 
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absence (for primitive 

t O  G R O N W A L L .  1 

2. 6i. Lemma 6. 

~) of factors i - - e ~ : ~  from L.  Finally (2. 54) is due 

I f  M(T) is the number o] zeros Q o[ L(s) [or which 

o < T < I r I < T  + ~, 

Shen 

(2. 6ix) M(T) < A (log (q + x)) ~ log (T + 2). 

The e's of a n  imprimitive L(s) are those of a certain primitive L(s)corres- 
ponding to modulus Q, where Q Iq, together with the zeros (other than s = o) 

of certain functions 

where 

i T. H. GRo~wA~,L, 'Sur les s6ries de Dirichlet correspondent ~t des caractbres complexes', 
Rendiconti dd Circolo Matematico di Palermo, col. 35 (1913), P~). 145--I59. Gronwall proves that  

3 
I 

[L(~)] < A log q(log log q)8 

for every complex Z, and states that  the same is true for real Z if hypothesis R (or a much 
less stringent hypothesis) is satisfied. Lx~vA~ ('Ober die Klassenzahl imagirl~tr-quadratischer 
Zahlkhrper', G6ttinger Navhrichten, 19!8, pp. 285--295"(p. 285, f.  n. 2)) has, however, observed 
that, in the case of a real Z, Gronwall's argument leads only to the slightly less precise 
inequality 

x ~ ~[ogg log q. IL(~)I < A log 

Landau also gives a proof (due to HEC~E) that  

i r.U)l < A log q 

for the special character ( - ~ ) a s s o c i a t e d  with the fundamental d i sc r iminan t -q .  

The first results in this direction are due to Landau himself ('(~ber d e s  Nichtverschwin- 
den der Dirichletsehen Reihen, welche komplexen Charakteren entsprechen', Math. Annalen, 
col. 7o (19H), pp. 69--78). Landau there proves that 

! 

IL(,)I < A (log q)~ 

for complex Z. 
I t  is easily proved (see p. 75 of Landau's last quoted memoir) that 

IL'(1)I < A(log q)~, 

so that  any of these results gives us more than all that we require. 
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The number of ~v's is less than A log (q + i) ,  and each E~ has a set of zeros, 

on a = o, at equal distances 

2~f 2~rg 

log ~ > log (q + ~) 

The contribution of these zeros to M(T) is therefore less than A (log (q + i)) ~, 
and we need consider only a primitive (and therefore, if q > I, non-principal) L(s). 

We observe: 

(a) that  ~ is the same for L(s) and L(,);  

(b) that  L(s) and L(s) are conjugate for real. s, so  that  the b corresponding to 

L(s) is 6, the conjugate of the b of-L(s); 
(e) that  the typical e of /~(s) may be taken to be either ~ or (in virtue of the 

functional equation) i - - e ,  so that  

S= Z I + i _ _  0 

is r ea l  
Beariflg these remarks in mind, suppose first that. ~ =  I.  

from (2. 5x) and (2. 52I), 

We have then, 

since 

Thus 

= A e ~(b)+S, 

I I-- ~=I. 
I-- 

I 8i-2~ 
I - -  

(2. 6x2) ]29~(b)+S I< A log (q+ ~). 

On the other hand, if a = o ,  we have, from (2. 5I) and (2. 522), 

4 _ IL(I) n(I) I 1 

and (2. 6x2) follows as before. 

2. 62. Again, by (2. 3x) 

L'(1) 
(2. 621) L(I) 

I 
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for every non-principal character (whether primitive or not). In  particular, when 
;r is primitive, we have, by (z. 62I), (z. 54), and (2. 33), 

~ ,  I~L ' ( I )  , i ( ) l<A(log(q+I))a.  (2. , 

Combining (2. 612) and (2. 622) we see tha t  

8 < A (log (q + i)) a (a. 623) 

and 

(2. 624) 19~(b)l < A (log (q+ x)) a .  

2. 63. If now q > x ,  and ;r is primitive (so tha t  1 ~ o ) ,  a n d s ~ z + i T ,  we 

have, by (2. 3I), (z. 33), and (2. 624), 

2 - - / ~  I I 

< A + A  log ( q + l ) + A  (log (q+ 1))a + A log ( IT l+e)  

< A  (log (q+ i))a log (ITI+ 2), 

e-- f l  <A(log(q+i))alog(lT[+2).  
(2 --  fl)~ + ( T -  7) ~ IT--71~I 

Every term on the left hand side is greater than A, and the number  of terms 
is not  less than  M(T) .  Hence we obtain the result of the lemma. We have 
excluded the case q ~ 1, when the result is of course classical? 

2. 7 r. Lemma 7. We have 

(2. 711) [bi<Aq (log (q+ I ) )  A. 

Suppose first that  x is non-principal.  Then, by (2. 621) and (2. 54), 

' Landau, p.  337. 
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We write  

(2.7i ) 2=  2, + 2; 

where ~ i  is ex tended  over the zeros for which 1 - - e < ~ ( e ) < e  and i~e over 

those for which 9~(q)= o. Now ~1-----8', where S' is the 8 corresponding to a 

pr imit ive  L(s) for modulus  Q, where Q[q .  Hence,  by  (2. 623), 

(2. 714) [ ~ t [  < A (log (Q + x)) a < a (log (q + 1)) ~.  

Again, the q's of ~ e  are the zeros (other than  s =  o) of 

[I " / ,  
,p 

t h e  ~ ' s  being divisors of q and r~ an m-th root  of un i ty ,  where m ~ e p ( Q ) < q l ;  

so tha t  the  number  of ~ , ' s  is less than  A log q and 

~, ~ e2 ~ i r , 

where ei ther  ~o~ = o or  

Any q~ is of the  form 

q_<_lo, l__<-~" 

Let  us denote  by  r a zero (other than  s----o) of i -  *~wT-~ s, by  q', a #,' for which 

iq, i_<_i, and by  q", a q, for which Iq, l > I .  Then 

2 ~ i ( m  + o,) 
q" -~ log "~, ' 

where  m is an integer.  Hence  the number  of zeros d~ is less than A log ~Y~ or 

than A log ( q + i ) ;  and the absolhte  value of the corresponding term in our sum 
is less than 

A < A log ~ 
(2. 716) ]q] ioj~ ] < A q l o g ( q + I ) ;  

I For (Landau, p. 482).%----X(v~), where X is a character to modulus Q. 

Acta mathematiea. 44. Imprim~ le 15 f6vrler 1922. 
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so that  

(2. 727) 

Also 

(2. 7~8) ] ~ < ~  i 5 _ ~ <  :t 

< A (log ~ , ) '  ~-~ < A (log (q + ~))~. 

From (~. 715),. (2. 7z7) and (2. 718) we deduce 

(2. 719) I~.1< aq 0og (q + ~))~; 

and from (2. 713), (2. 714) and (2. 719) the result of the lemms. 
2. 72. We h a v e  assumed that  ~ is not a principal character: For the 

principal character (rood. q) we have1 

(1) L,(8)=II~ ~ - ~  ~(s). 

Since a ~ o, I~ ~ I ,  we have 

log W k ~'(s) L',(s) 

wig 

8 8~I 
2 ( ~  +~1, ~ 

log ~ + , ~ / ~ - ~ 3  
~ "t:O'-- I 

i) 

v ~ _  ~ +~ . 

This corresponds to t2. 712), and from this point the proof proceeds as before. 

! Landau, p. 423 . 

2 refers to the complex zeros of /~l(s)o not merely to those of C(s). 
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2. 81. Lemma 8. 

(2. 8ii) 

w h  e're 

(z. 812) 

(2. 8x3) 

(2. 814) 

III: On the expression of a number as a sum of primes. 

I[ o < ~ < ~  then 

k - -1  

Ok = ~ F(Q) y - o ,  
Ok 

1 1 1 

IPl < A V~l (log (q + x))a(q + ~- ~ + l rp~-~  ),  

= arc tan  ~ .  

This is an immedia te  corollary of Lemmas  4 and 7. 

2. 82. Lemma 9. 
I 

I1 o < ~ ~ z then 

l(z)  = ~o + o,  

Mq) 
9--- h -y ,  

( ' 
I o l < A V q ( l o g ( q +  ~))a q+~-~+l yi-o~-e-~log (~ + 

= arc tan  ]0~" 

I ~1.-  <_ ~ ,  It(e) r-el + ~,lr(e) r-ol, 

(2. 82~) 
where 

(2. 822) 

(2. 823) 

(z. 824) 

We have 

(z. 825) 

where ~1 extends 

In ~1 we have 

2)), 

19 

over Qk's for which 171>1, ~ over  those for which Irl<~. 

( 0) IF(e) y-o] = Ir(fl  + ir) ll Y]--~exp r arc tan 

1 

=< A 1~,1~ r l  -o e-~m 
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(since { Y{< A and, by hypothesis R, f l<O).  The number M(T) of q's for which 
171 lies between T and T + I ( T > o )  is less than A ( l o g ( q + I ) ) ~ l o g ( T + 2 ) ,  by 
(2. 6II). Hence 

1 ~ 1 

]~,lrl~ e-6M <= a (log (q + I)) a ~.a (n + I) ~ log (n + 2)e -6"  

_ 0 - 2  2 (i  2) 
(2. 826) X, lr(e) Y'~ A (log (q + I))al YI - ~  d log ~d + " 

Again, once more by (2. 611), ]~. has a tmos t  A (log (~/+ i)) a terms. 2. 83. 
We write 

<2. 831} 2, , ,  + 

~ , l  applying to zeros for which i -  O <f l  < O, and ~ , ~  

Now, in 22 '  

to those for which fl = o. 

[ y - o { = [  y l -~exp  (7 arc tan 0) 

and in 22,1' Ir(e)l< a. Hence 

(2 s3:) 

Again, in ~.,~, [ Y { < A and 

by (2. 716); so that  

(2. 833) 

I < A (tog (q + I))a{ YI -~  

! {q{<Aq log (q + x), 

lel 

i <  < A ;~,,~ I+l Aq (log (q + :))a. 

From (2. 825), (2. 826), (2. 83I), (2. 832), and (2, 833), we obtain 
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say; and from (2. 8ii) ,  (2. 812), (2. 813), (2. 82x), (2. 822)and (2. 834)we deduce 

Io1= + P  

h 1 l 
< ~lOkOkl + A V@ (log (q + x))~ (q + V-~+l YpO ~) 

k--1 

~ ( ~ ~ t ;  )) <-K ~I-Ik+ AV~(log(q+ i))A q+~--~+lI~'l-od-e-~log +2 
k--I 

< ~ ~ (,o~ ,~§ i , ,  (~§ ~-~+, ~,_o~-~-~ lo~ (~ +2))~, 

tha t  is to say (2. 823). 
2. 9. Lemma zo. 

(2. 9 ~) 

We have in fact ~ 

9(q) > (x--  ~) e-C~-g q log q 

for every positive $, C being Euler 's constant.  

We have 

h ~q~(q) > Aq (log q ) -a .  

(q > q, (~)) 

3" IX, 

(3. xxx) 

so that 

(3. xxz) 

then 

(3. H3) 

3. P r o o f  of  the main theorems.  

Approximation to v~(n) by the singular Series. 

Theorem A. I / r  is an integer, r >=3, and 

(](x))~ = ~ vr(n) x", 

v~(n) = ~ log ~ i  log w2"" .log ~ ,  

nv-- 1 

( r -x)!  
t.~ r + 0 ( n r - - l +  (0- '3)  ( log n)  B )  

n r -  I 

Landau, p, 217. 
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where 

(3. I14) 

I t  is to be unders tood,  here and in all t ha t  follows, t ha t  O's refer to the 

limit-process n--*oo, and  tha t  their  cons tants  are functions of r alone. 

If  n > z ,  we have 

f dx (,~. i i 5 )  ~ , ( n )  = 2-~ (1 (~ ) ) "~ ,  

the pa th  of integrat ion being the circle ]x] = e -R, where H ~ i - ,  so t h a t  

(#) = - I + O  c o - .  I - - I x l  n n 

Using  the F a r e y  dissection of order IV = [ 1 / n ] ,  we have 

(3. 116) 

say. Now 

Ar 

xn+ l  
q-t  p<q,(p,g)=l tp, e 

X n + l  
t /  

Cp, g 

I t , - ~ f l  <= lo l ( I t~ - , l  + l l , - ~ p l  + .. . + l ~ f - ,  1) 

< B ( I O l ' - ' l  + Io~'-'1). 

Also IX-"{=e"H<A. Hence 

(3. 117) fp,q ----- lp, q + mio, g , 

where 

(3. i i8 )  

(3 '  I I9) 

i f dX 
Ip, ~ ---- ~-~ j ~ f  -X-.T i , 

cp, q 

Op, q 

- -  Of p ,  q 

+ Io~f"l)d0). 
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3- I2. We have ~-~H--=- I  and  q < V n ,  and so, bv (2. 823), 

a ] 

(3. 1 2 1 ) -  I O l < A n ~ ( l o g n ) a + A  ( l o g n ) a V q l Y [ - ~ 1 7 6  (I + 2 ) ,  

where  6 = arc tan .~ . .  
IVl 

23 

We must  now distinguish two cases. If lal<n, we have 

lYI>A~, ~>A, 
and 

If  on the  o the r  hand  ~ < 10 ! < 0~,q, we have  

A, 
d > A ~ >  n IYI>AlOl, 

1 ) _o__x 1 
(3. 123) V~lYl-~176 <AV~.IOI-~ ~lal~ 

1 1 1 1 1 

= A n o+ i log n (q ] 0 ])-~ < A n o+ i log n .  n -  ~ ----- A n ~ -i log n,  

Thus  (3. I23) holds in e i ther  case. 
1 

since q]O[<qOp, q < A n  ~. 

so, by  (3. x2I), 

(3. ~24) I o l  < A n  ~  (log n) a 

3. 13. Now, r e m e m b e r i n g  tha t  r > 3 ,  we have 

Op, q Op, q 

j" < fl rl- , .- , ,eo 

< Bh_(~_ ! + O~ ) ~(,.-1) dO 
0 

< Bh-(~ -1) n,-~.  

n 

Also 0 > _x and 
- - 2  
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a n d  s o  

(3- :r3z) .j I O ~ - l l d 0  <Bn "-~ (~axlOI)  ~h-(,-,) 
v,q -O'v,q q 

_ , - , + ( o - -  ~) 
< Bn~-3+ e +-] (log n )  B = .t~In 4 (log n) ~, 

by (3. zz4) and (2. 9z). 
3. I4. Again, if arg x----~o, we have 

?' ; ]~ Ill'aO= tl'de 
- O'v,~ o 

= ~  (Zog ~')'1 ~1 ~ < A ~ log m .4(m)I~ I"" 

< A(~ --Ixl')  log k.,r Ixl ~,- 

< a ( ~ - - I ~ l ) ] ~  ~ log ~1~1 ~,-. 
'm~2  

Similarly 

Hence 

< i__ lx  ~ < An !ogn .  

I./I__< .~ log ~'I~V < ~(~)I~I'< i A __[:el <An" 

(3. ~4 z) 

q 2a: 

P ,q  _ 0fp, q ' - /  0 
, . ./ 

< B n ~ log n .  n "-s  . n log n 

< B ~ - ~  + (o-]) 0og ,~1 ~'. 
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F rom (3. i16),  (3. II7),  (3. I I9) ,  (3- 131) and (3. 141) we deduce  

(3. I42) = + o ( ; - '  + (0- )(log . ) - ) ,  

w h e r e  lp, q is def ined by (3- II8). 
3. I5. In lp, q we wr i te  X = e  - r ,  d X = - - e - r d Y ,  so t h a t  Y v a r i e s o n  the 

s t ra igh t  line from ,]+i0p,  q to  ~-- i0~,q .  Then,  by (2, 822) and (3. i i8) ,  

(3 ,  I 5 I )  

Now 

(3. 152) 

where  

+l -- i O Cp, q 

lp,~-~-- I lp(q)l ~ ( r ,  renrdy.  
2 ~ i ~  h ] 

~7+ t~Op, g 

w--iO'p,q -/ 
~+ iOp, q ~--iQo Oq 

cO 

~- 2 ~ i ( T -  - i)--~ + 0 ~+iO[-"dO , 
Oq 

Also 

(3. 153) 

Oq 

0q ---- M i n  (0p, q, 0 ' p , q ) >  I . 
p<q 2 q N  

co  

+ iO)'"dO</O-"dO < BO~-" < B (qVn) ~-~. 
oq 

F r o m  (3. 151), (3, I52 ) and  (3- 153), we deduce  

(3 .  1 5 4 )  

where 

(3. 155) 

n r  -- 1 __ r 

eq(-- np) lp, q = (r--i):! ~ lef(q)! ttt(q-!t eq(-- np) + Q, 

P,q g 

1 N 1 

< B n ~ ( ~ - ~  (log q)B < Bn ~" (log n) s .  
q ~ l  

Aeta mathematlca. 44. Imprim6 le 15 Nvrier 1922. 



26 G. H: IIardy and J. E. Littlewood, 

Since r_>_3 and 0 >  1 , ~ - . r < r - - i - -  r - - l +  O .  , and from (3. I42), 
--2 2 4--  

(3. I54), and (3- 155) we obtain 

(3. 156) v r ( n ) - - ( r _ i ) !  e q ( - - n p ) +  

n -i t  (q)l (log n)') 
- - ( r__i i !q<~N/~-~!  ce( - -n)  + 

3. 16, In order to complete the proof of Theorem A, we have merely to 

show that  the finite series in (3. 156) may be replaced by the infinite series S~. Now 

r-1 II'(q)~" c Bn r-1 ~ qx-~ (log q)B < Bn-i ~ (log n) B, n q ~ ( ~ ]  q ( - -n )  < q>N 

and X - r < r - - l + ( O - - 3 - ] .  Hence this error may be absorbed in the second term 
2 / 4! 

of (3. 156), and the proof of the theorem is completed, 

Summation o/ the singular series. 

3. 21. Lemma i t .  I] 

(3- 21i) c q ( n ) -  ~ e q ( n p ) ,  

where n is a positive integer and the summation extends over all positive values o / p  

less than and prime to q, p = o being included when q-~ 1, but not otherwise, then 

(3- 212) 

(3. 213) 

i[ (q, q ' ) =  I; and 

(3. 214) 

cq(--n)= cq(n); 

eqr (n) = cq(n) Cq,(n) 

where ~ is a common divisor o] q and n. 

The terms in p and q - - p  are conjugate. 

and cq(--n) a r e  conjugate we obtain (3. 212) .a 

Hence r is real. As cq(~) 

i The argument fails if q---- i or q---- 2; but G(n)= G(--n) = i, c~(n)= c~(- n)-~ -- i. 
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Again 

where 

( ( ' )  ~ 1 2 n P ' J r i i  
cq(n)eq,(n)  --- 2 e x p  2n~vi  

p,p, p, pr 

P = pq' § p'q. 

When p assumes  a set  of 9(q) values,  posiOive, prime to q, and  incongruent  to 

modu lus  r and p' a similar sot of vahtes for modulus  q', then P assumes a set  

of r r ----- 9 (qq') values ,  p l a i n l y a l l  posit ive,  prime to qq' and incongruent  to 
modulus  qq'. Hence  we obta in  (3- 213). 

F inal ly ,  it is p h i n  tha t  

dlq h--O 

which is zero unless q In and then equal  to q. Hence,  if we wri te  

we have  

and therefore 

~(q) = q (q I n), , ~ )  = o (q" n),  

~ca(n)=~(q), 
dlq 

die 

b y  the well-known inversion formula of MSbius. t 

3. 22. Lemraa zz. Suppose that r > 2 and 
This is (3. 214)3 

~- l  ~P(q)! c~( .... n). 

Then 

(3. 22o) S~ ~ o 

t Landau, p. 577. 
The formula (3- 214) is proved by RXMXt~UaAN ('On certain trigonometrical sums and their 

applications in the theory of numbers', Trans. Camb. Phil. Soc., eel. zz (~918), pp. z59--z76 (p. 26o)). 
It had already been given for n ---- i by LANDAU (Handbuch (19o9), p. 572: Landau refer s to it as 
a known result), and in the general case by JExs~g ('E~ nyt Udtryk for den talteoretiske Funk- 

tion 2 I,(n)=M(n)', Den 3. Skandinaviskr ~lalematiker-Kongres, K~ t ian ia  1913, Kristiania (~915), 

P. 145). Ramanujan makes a large number of very beautiful applications of the sums in ques- 
tion, and they may well be associated wi th  his name. 
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i] n and r are o] opposite parity. But  i] n and r are o] bike parity then 

(~. 223) 2~r II , (~-~)~--(--~)~ ~' 

where p is an odd prime divisor o] n and 

(3. 224) 

L e t  

(3- 225) 

Then 

, ( , x - -  ~)~t 

(~ ,(q}V , ~ )  c q ( - -  n)  = Aq. 

~e(q q') = ~e(q) ~L(q'), 9 ( q  q') = 9 ( q )  ~P(q'), c ~ ,  ( - -  n)  - -  c q ( - -  n)  eq, ( - -  n )  

if (q, q ' ) =  I;  and therefore (on the same hypothesis) 

Aqq,= A~ A~,. (3- 226) 

Hence t 

where 

(3. 227) 

S~.= A~ +A.,  + A , +  . . . .  I + A2 + . . . .  l l z g  

go' = I + A .  + A . ,  + A . .  + . . . .  I + A . ,  

since A ~ ,  Ag , ,  . . .  van ish  in v i r tue  of the f ac to r  p (q) .  

3. 23- I f  " ~ n ,  we h a v e  

~ e ( ~ )  = - -  ~,  ~p(~)  = ~ - -  ~, c ~ ( n )  = ~ e ( ~ )  = - -  ~, 

(3. 231) A ~ =  

If on the other hand "~in, we have 

(3. 232} 

- -  I )  r 

(--I)~ 

I Since]cq(n)l_<_~3, where O[n, we have cq(n)---O(1)whennisfixedandq--,~. Also 

by Lomma io, ?(q)> A q(logq) -A.  Her~ce the series and products concerned are absolutely 
convergent. 
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(3. 233)  
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/ , % =  II 

I f  n is even and  r is odd, the first factor  vanishes in vir tue of t h e  fac tor  

f o r  which w----- 2; if n is odd and r even, t h e  second fac tor  vanishes similarly. 

Thus  Sr = o whenever  n and r are of opposite par i ty .  

If  n and  r are of like par i ty ,  the  factor  corresponding to w = 2 is in any  

case z; and 

~ / s~=2H ~ (~-~)'/=," (p-~)~-(-~)~ ' 

as s ta ted  in the lemma. 

Prool o/ the /inal /orraulae. 

3. 3. Theo rem  B. Suppose that r > 3. Then, i / n  and r are o/unlike parity, 

(3. 3I) ~,~(n) = a(n~-l). 

But i~ n and r are o / l ike  parity then 

2o~ ( ( ~ -  + ( .  ~)r(p - ~)i, (3. 32) r~(n) c " ~ ( r - - I ) t n ~ - l f l  l-- (PI)r I ) r - - ( - -  I) r ] 

where p is an odd prime divisor o/ n and 

(3  = f i  
( w - -  i)~/ "Er 

This follows immedia te ly  from Theorem A and Lemma i9..1 

3. 4. Lemma i3. I /  r ~ 3 and n and r are o] like parity, then 

u~(n) > Bn ~-1, 

/or n >= no(r). 

i Results  equivalent  to these are stated in equations (5. II)--(5. 22) of our note 2, but 
incorrectly,  a factor 

(log n) - r  

being omit ted in each, owing to a momentary  confusion between ,r(n) and Nr(n). The vr(n) 
of 2 is the  Nr(n ) of this memoir.  



30 G.H.  Hardy and J. E. Littlewood. 

This lemma is required for the  proof of Theorem C. If  r i s  even 

- I/ 
~t ( ~ - ~ ) ' - ~  I > ~ "  

If r is odd 

~ff-, 8 

In ei ther case the  conclusion follows from (3. 32). 

3. 5. Th eo rem C. I]  r > 3 and  n and  r are oI l i ke  parity,  then 

q,,(n) 
N , ( n )  c~ (log n) ~" (3. 5I) 

We observe  first tha t  

~i + ~'2 + ' - "  +%. :n  

and 

(3. 5 I I )  

z ~ ~ I < Bnr--1 
m t + m ~ + .  �9 . + m r = n  

~,r(n) = ]~ log "~1""" log ~ < (log n) ~ N~(n)  < B n  ~-1 (log n) r. 
~r ,+~,+. . .  + % = n  

Wri te  now 

(3. 512) V; = v'~ + v",, N~ = N'~ + N"~, 

where v'~ and N'~ include all te rms of the  summat ions  for which 

. ~ / , > n  1-~ ( o < 6 < r ,  s ~ - i , 2  . . . . .  r). 

Then plainly 

v'r(n) > ( x  --$)~ (log n) iN ' r (n) .  (3. 5~3) 

Again 

~ <n 1-~ \~, +~ ,+  - �9 �9 + % _ x = .  - % / 

< B~,~ N r _ l ( n - -  w~) < B n  I " ~  . n ~-~ < B n  ~ - x - ~  , 

Vgr < n  a - o  

~/',(n) < (log n)~N"~(n)  < B n  ~ - ! - ~  (log n) ~. 

But  ~ ( n ) >  B n  ~- l  for n > n o ( r ) ,  by  Lemma I3; and so 

(3. 514) (log n)rN"~(n)  = o(u~(n)),  ~,"~(n)----- o ( ~ ( n ) ) ,  

for every  posit ive ~. 
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From. (3- 5II),  (3. 512), (3- 513), and (3. 514) we deduce 

(I - - ~  V (log nF (N~ --  N"~) <_ v~ - -  v"~ < (log n)~ N~, 

(i --~)~ (log n)~N~<v~ + o(v~) <__(log n fN~ ,  

~tt~. ~t r 

( t - - ~ ) ~ <  lira (log n)7-N, ' lim (log n)~N~ < i .  

As J is arbitrary, this proves (3. 5I). 

3] 

(3. 6I) N3(n) c~Q(logn) an~ ~*-3p+3 ] 

where ~ is a prime divisor o/ n and 

"Er 

This is an almost immediate corollary of Theorems B and C. These theo- 

rem~ give the corresponding formula for  N3(n ). If not all the primes are  odd, 

two must be 2"and r g ~ 4  a prime. The number of such representations is one 
at  most. 

Theorem T.. Every large even number n is the sum o/ /our  odd primes (ol 
which one may be assiqned.) The asyml~tolic [ormula /or the tolal number o/repre- 
sentations is 

(3. 63) 
n s ~ I ~  ~ 3~ ~ ~ ~ 

where p is an odd prime divisor o/ n and 

~ a 3  

This is a corollary of the same t wo  theorems. We have only to observe 

that  the number of  representations by four primes which are not all odd is 

plainly O(n). There are evidently similar theorems for any greater value of r. 

3. 6. Tt/eorem D. Every large odd number n is the sum o/three odd p~ trees. 
The asymptot~'c [orm~la /or the number o/ representations ~ ( n )  is 
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4- Remarks  on 'Goldbach's  Theorem' .  

4. I. Our method fails when r ~ 2 .  I t  does not fail in principle, for it 

leads to a definite result which appears to  be correct; but we cannot overcom'e 

the difficulties of the proof, even if we assume tha t  O----I. The best upper 
2 

1 
bound that  we can determine for the error is too large by (roughly) a power n 4, 

The formula to which our method leads is contained i n t h e  following 

Conjecture A. Every large even number i, the sum o/fwo odd primes. The 
asympfotic /ormula /or the number o/ representatives is 

(4. I~) 

where ~ is an odd prime divisor o/ n, and 

~'-- 3 

We add a few words as to the history of this formula, and the empirical 

evidence for its truth. ~ 

The first definite formulation of a result of this character appears to be 

due to 8YLVESTER s, who, in a short abstract published in the Proceedings o/ 
London Mathematical 8celery 4n i87i, suggested tha t  

(4. I3) 

where 

Since 

z n  ~ - - 2  

As regards the earlier history of 'Goldbach's Theorem', see L. E. Dic~sos, History of 
the Theory of Numbers, vol. i (Washington I9x9)~ pp. 42t--425. 

2 j .  if. SYI,VES~.R, 'On the partition of an even number into two primes', Prec. London 
Math. See., ser. I, v o l . 4  (187I),.pp. 4--6 (Math. Papers, vol. 2, pp. 7o9--7II). See also 'On the 
Goldbach-Euler Theorem regarding prime numbers', Nature, vol. 55 (I896--7), pp. lq6--x97, ~69 
(Math. Papers, vol. 4, PP- 734--737). 

We owe our knowledge of~Sylvester's notes on the subject to Mr. B. M. WILSON el  Trinity 
College, Cambridge. See, in connection with all that follows, Shah and Wilson, I, and Hardy 
and Littlewood, z. 
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o, nd x 

(4. 14) l I  I - -  c~ ] O ~ '  

where C is Euler ' s  cons tant ,  (4. 13) is equivalent  to  

(4- 15) N 2 (n) c~ 4 e'C C2 (log n f  J t  ~ p _  2] 

and cont rad ic t s  (4. I i ) ,  the  two formulae  differing by  a fac tor  2 e - C = I .  1 2 3 . . .  

We prove  i n  4. 2 t h a t  :(4. I I )  is the  only formula of the kind t h a t  can  possibly 

be correct ,  so t h a t  Sylvester ' s  formula  is erroneous.  Bu t  Sy lves t e r  was the first 

t o  ident i fy  the fac tor  

(4" 16) H ( ~ - ~ ) '  

to which the irregularities of N2(n) are  due. There  is no sufficient  ev idence  to 

show how he was led to  his resul t .  

A qui te  di f ferent  formula was suggested b y  ST*CKET.~ in I896, viz., 

N2(n) ~ (log ~ ) ~ n  

This  formula  does no t  in t roduce  the fac tor  (4. i6), and does not  give a n y t h i n g  

like so good an approx imat ion  to the facts;  i t  was in a n y  case shown to be 

incor rec t  by  LANDAU 3 in !9oo. 

In  19~5 there  appea red  an  uncomple ted  essay on Go]dbaeh 's  Theorem b y  

MERLT~. 4 Mm~LI~ does not  give a comple t e  asympto t i c  formula,  bu t  recognises 

(like Sylvcs te r  before him) the  impor tance  of the fac tor  (4. 16). 

About  the same t ime  the  problem was a t t acked  by  BRuz~ ~. The formula 

to  which Brun ' s  a rgument  na tu ra l ly  leads is 

Landau, p. 218. 
P. ST~-CKm,, 'LTber Goldbach's empirisches Theorem: ffede grade Zahl kann ale Summe 

yon zwei Primzahlen dargestellt werdenl, GOttiuger ~TachricMen, I896, pp. 292--299. 
S E. Lx~I)AV, '~ber die zahlentheoretische Funktion .~(n)und ihre Beziebung zum Gotd- 

bachschen Satz', GOttinger Nachrichten, 19co , pp. 177--186. 
4 ft. MERLI~, 'Un travail sur les nombres premiers', Bulletin des sciences mathdmatiques, 

eel. 39 (I915), pp. I21--J36. 
V. Baud, 'Ober das Goldbaehsche Gesetz und die Anzahl der Primzahlpaare',Archiv for 

Mathematik (Christiania), eel. 34, part z (~915) , no. 8, pp. I~ i  5. The formula (4. 18) is not actually 
formulated by Brun: see the discussion by Shah and Wilson, x, and Hardy and Littlewood, 2. 
See also a second paper by the same author, 'Sur lee nombres premiers de la forme a2+ b', 
ibid., part. 4 (I917). no. x4, pp. i~9; and the postscript to this memoir. 

Acta mathernatlca. 44. Imprtm6 1o 16 f~vrier 1922. 
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(4- ~7) 

where 

(4. I7 I  ) 

G. H. Hardy and J. E. Littlewood. 

3<~< V~ 

This  is easi ly shown to be equiva len t  to  

(4. 18) 
?t 

and  differs f rom (4- IX) by  a fac tor  4 e - - ~ c - ~ i . 2 6 3 . . .  The  a r g u m e n t  of 4. 2 
will show t h a t  this  formula ,  like Sy lves te r ' s ,  is incorrect .  

F inal ly ,  in  1916 ST)ICKEL 1 r e tu rned  to  the  sub jec t  in a series of memoi r s  

publ ished in the  Sitzungsberichte der Heidelberger Akademie der Wissen~chaflen, 

which we have  unt i l  ve ry  r ecen t ly  been  unab le  to consul t .  Some  fu r the r  r e m a r k s  

concerning these memoi r s  will be found  in our final pos t sc r ip t .  

4. 2. We proceed  to jus t i fy  our  asser t ion t h a t  the  fo rmulae  ( 4 - 1 5 ) a n d  

(4, 18) canno t  be correct .  

Theorem F. Suppose it to be true that" 

(4. 2~) 

it 

and 

(4. 22) 

i[ n is odd. 

(4. 23) 

Then 

N~(n) ~ a (iog n ~  H ~ - i 

n = 2 a p ~ ' ~ ' .  . . (a > o, a ,  a r . . . .  > o), 

N,.(n) ---- o 

~ - 3  

P. STXCKEL, 'Die Darstellung der goraden Zahlen als Summen yon zwei Primzahlen', 8 
August x916; 'Die Lfickenzahlen r-ter Stufe und die Darstellung der geraden Zahlen als Sum- 
men und Differenzen ungerader Primzahlen', I. Teil 27 Dezember I917, II.  Teil I9 Januar x9x8, 
III .  Tell 19 Joli 1918. 

Throughout 4.2 A is the same constant. 
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Write 

(4. 24) ~2(n)=AnlI(~-I)  ~--2- (n even), ~2(n)=o (n odd). 

Then, by (4- 21) and Theorem C, now valid in virtue of (4. 2!), 

(4. 25) v~ (n ) -  2] log w log ~ c,~ ~(n) ,  

it being understood that ,  when n is odd, this formula means 

~,~(n)  = o ( n ) .  

Further  let 

/ ( s )  = - -  - ~  . . . .  ~ ~. 

these series being absolutely convergent if ~ ( s ) >  2, ~ ( u ) >  ][. Then 

(4. 26) 

say. 

Then 

Hence 

(4. z7) 

/(=)=A Zn-=II  ~ - ] [  
, 

= A ~ 2 -~= p-""  p'-~'= 
a>0 

(~--  I) ( r  I ) . . .  
"'" ( p - - 2 ) ( r  

2 - " A  ] [ (  w ~ ] [  W-~ ) - - 2 - " A  ~(u) 

Supposo now tha t  u - -* i ,  and let 

"~0 "-u W~a I 

*0"=3 ][ 

,Cff--u 

[ ~ -  ][)' ][ 

A A ~ A 

35 
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On the other hand, when x ~ i ,  

and so 

(4. 2s) 
I 

~(~) + ~(z) +--- + ~ (n )  ~ - n  ~. 
2 

I t  is an elementary deduction ~ that  

~'~ 9% s 8 - -  2 

when s ~ 2 ;  and hence* tha t  (under the hypotheses (4. 21) and (4. 22)) 

(4. 29) l ( s )  ~ I 
8 ~ 2  

Comparing (4. z7) and (4. 29), we obtain the result of the theorem. 

4. 3. The fact that  both Sylvester's and B r u n ' s  formulae contain an 

erroneous constant factor, and that  this factor i s  in each case a simple function 

of the number e - e ,  is not so remarkable as it may seem. 

In the first place we observe that  any formula in the theory of primes, 

deduced /rein coasiderations o/ probability, is likely to be erroneous in just this 

way. Consider, for example, the problem 'what is the chance that a large number 

n should be prime?' We know that  the answer  is that  the chance is approxim- 

i 
a te ly  log n 

Now the chance that  n should not be divisible by any prime less than a 

/ized number x is asymptotically equivalent to 

W e  h e r e  use  T h e o r e m  8 of our  p a p e r  'Tauber i an  t h e o r e m s  c o n c e r n i n g  p o w e r  s e r i e s  a n d  
D i r i ch l e t ' s  s e r i e s  w h o s e  coef f ic ien t s  are  pos i t ive ' ,  Prec. London Math. See., ser .  2, vol.  I3, pp .  
i ; 4 - - I92 .  T h i s  is t h e  qu i ckes t  proof ,  b u t  by  no  m e a n s  t h e  mos t  e l e m e n t a r y .  T h e  f o r m u l a  
(4. 28) is e q u i v a l e n t  to t h e  f o r m u l a  

n a 
2 (log n) ~ 

1 

u sed  by L a n d a u  in h i s  no te  quo t ed  on p. 33. 
2 For  gene ra l  t h e o r e m s  inc lud ing  those  used  h e r e  a s  ve ry  specia l  cases,  see  K. KNow, 

D i v e r g e n z c h a r a c t e r o  gewi s so r  D i r i c h l e t ' s c h e r  R e i h e n ' ,  Acta Mathematica, vol. 34, t9o9, p p . I 6 5 - -  
zo~ (e. g. Satz I I I ,  p. I76). 
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and  it  would 

equ iva l en t  to  

B u t  ~ 
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be na tu ra l  to infer ~ t h a t  the chance  requi red  is a symp to t i c a l l y  

va> Vn log n 

and  our inference is incorrect ,  to the ex t en t  of a fac tor  2e  - C .  

I t  is t rue  t h a t  B run ' s  a r g u m e n t  is no t  s t a t ed  in t e rms  of probabi l i t i es  a, 

bu t  i t  involves  a heur is t ic  passage  to the  l imit  of exac t ly  the same cha rac t e r  

as t h a t  in the  a r g u m e n t  we have  jus t  quoted.  Brun finds first  (by an ingenious 

use of the  ' s ieve  o f  E r a t o s t h e n e s ' )  an  a s y m p t o t i c  fo rmula  for the  n u m b e r  of 

r ep resen ta t ions  of n as the sum of two numbers ,  neither divisible by any /ixed 
number o/ primes. This formula  is cor rec t  and  the  proof  valid.  So is the  first  

s tage  in the a r g u m e n t  above ;  i~ rests  on an enumera t i on  of cases, and  all refe- 

rence  to  ' p robab i l i t y '~  is easi ly e l iminated.  I t  is in the  passage  to  the l imit  

t h a t  e r ror  is in t roduced ,  and  tile na tu r e  of tile error  is the  same  in one case 

as in the  other .  

4. 4. StuArt and  WILSON have  tes ted  Conjec tu re  A ex tens ive ly  b y  compar ison  

with  the  empir ical  d a t a  collected by  CA~TOR, AUBRY, HAVSSNER, and  R1PEaT. 

We rep r in t  the i r  tab le  of resul ts ;  bu t  some p re l imina ry  r emarks  are required.  

In  the first  place i t  is essentia], in a numer ica l  test ,  to work with  a fo rmula  

N~(rt), such as (4. x~), and '  no t  with one for v~(n), such as (4. 25). In  our  

analysis ,  on the o the r  hand,  it is r~(n) which p resen t s  itself first,  and  the fo rmula  

for  N2(n ) is secondary .  In  order  to der ive  the  a s y m p t o t i c  fo rmula  for N~(n), 

we Write 

~q(n) = ~ log ~ log z~'c~ (log n)~ N2(n).  
~-F "~ff r= n 

The  fac tor  (log n) ~ is ce r ta in ly  in er ror  to an order  log n, and  it is more  na tu r a l  5 

to replace  v2(n) by  

((log n) ~ - -  2 log n + - - - )  N2 (n). 

One might well replace ~ <  l/n by ~ < n ,  in which case we should obtain a probability 
half as large. This remark is in itself enough to show the unsatisfactory character of the argument. 

2 Landau, p. zi8. 
a Whether Sylvester's argument was or was not we have no direct means of judging. 

.Probability is not a notion oE pure mathematics, but of philosophy or physics. 
6 Compare Shah and Wilson, l. c., p. 238. The same conclusion may be arrived at in 

other ways. 
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For the asymptotic formula, naturally, it is indifferent which substitution 

we adopt. But,  for purposes of veri]ication within the limits o/ calculation, it is 

by no means indifferent, for the t e r m  in log n is by  no means of negligible 
importance; and it will be found that  is makes a vital difference in the plausibility 

of the results. Bearing these considerations in mind, Shah and Wilson.worked, 

not with the formula (4. rI), but  with the modified formula 

N,.(n) c~ q(n) = 2 C2 (log n) ~ --  z log 

Failure to make allowances of this kind has been responsible for a good 

deal of misapprehension in the past. Thus (as is pointed out by Shah and 

Wilson~) Sylvester's erroneous formula gives, for values of n within the limits 

of Table I, decidedly better results than those obtained from the ~nmodi]ied 
formula; (4- I i) .  

There is another point of less importance. The function which presents 

itself most naturally in our analysis is not 

/(x) = ~_~ log Wx ~ 

but  

= = l o g  

~ ,  l 

The corresponding numerical functions are not ~2(n) and N~(n), but  

(so that  Q2(n) is the number of decompositions of n into two primes or two powers 
o] primes). Here again, N~(n) and Q~(n) are asymptotically equivalent; the diffe- 

rence between them is indeed of lower order than errors which we are neglecting 

in any ease; but  there is something to be said for taking the latter as the basis 

for comparison, when (as is inevitable) the values of n are not very large. 

In the table the decompositions into primes, and powers of primes, are 

reckoned separately; but  it is the total which is compared with q(n). The value 

of the constant 2Cz is I .  3zo3. I t  will be seen that  the correspondence between 
the calculated and actual values is excellent, 

L 1. c., p. 242. 
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Table L 

n q,(n) p(n) Q,(n) : p(n) 

3 0 = 2 . 3 . 5  

3 2 - - 2  s 

3 4 = 2 . 1 7  

3 6 = 2 ~ . 3  ~ 

210----2.3 . 5 . 7  

2 1 4 = 2 . 1 0 7  

2 1 6 = 2 a . 3 8  

2 5 6 = 2  s 

2,048 = 211 

2 , 2 5 o =  2.32 .5 a 

2,304 - -  2 s �9 3 ~ 

2,306 = 2.  1153 

2 , 3 1 0 =  2"3  '5  " 7 '  1I 

3,888 = 2 4 " 3 g 

3,898 = 2.  I949 

3,990 = 2 . 3  - 5 . 7  �9 19 

4,096 = 21~ 

4,996 = 27 �9 1249 

4,998 = 2 -3 �9 7 ~. 17 

5,000 = z 7 "54 

8 , 1 9 o = 2 , f f . 5 . 7 . I 3  

8,192 = 2Is 

8,I94~-~2.I7.24I 

lO,OO8 = 2-'. 37. 139 

IO, OIO = 2 . 5" 7 �9 I I  . 13 

10,014 .-- 2 . 3  �9 1669 

30,030 ----- 2 . 3 . 5  �9 7 �9 I i  . 13 

36,96o--  2z .3  �9 5 �9 7 .  I I  

39,27o---- 2 . 3 . 5 -  7 �9 11 .17  

41,58o = 2 ~.3 ~. 5 . 7 .  I t  

i 

6 +  4 = 1 o  

4 +  7 = i i  

7 + 6  = 1 3  

8 + 8  - - 1 6  

42 + o = 4 2  

17 + o = 17 

28 + o = 2 8  

i6 + 3 = I 9  

5 ~ + 1 7 = 6 7  

1 7 4 +  2 6 = 2 o o  

I34 + 8 --.--I4 z 

67 + 2 0 = 8 7  

228 + 1 6 = 2 4 4  

186 + 2 4 = 2 1 o  

99 + 6 = 1 o  5 

3 2 8 +  20-----348 

IO4 + 5 = 1 o 9  

124 + I 6 = I 4 O  

228 + 2 0 = 3 0 8  

i5o + z 6 =  

578 + 2 6 =  

15o + 3 2 =  

192 + i o =  

388 + 3 ~  

384 + 3 6 =  

4 0 8 + 8  = 

1,8oo + 5 4 =  

1,956 + 3 8 =  

2,152 + 3 6 =  

2 , 1 4 o + 4 4 =  

50,026 = 2 . 2 5 o I 3  702 + 8 = 

5 o , 1 4 4 = 2 ~ . 1 5 6 7  607 + 3 2 =  

17o , i 66=2 .3 .79 .359  

1 7 o , 1 7 o = 2 . 5 . 7 . 1 1 . 1 3 . 1 7  

17o,172=2~.3-'.29.163 

3,734 + 4 6 =  

3,784 + 8 = 

3,732 + 4 8 =  

22 

8 

9 
I7 

49 

i6  

32 

63 

I79 

136 

69 

244 

I97 

99 

342 

lO2 

I I  9 

305 

I76 157 
q - - - - -  

604 597 

182 I71 

202 . _ _ 2 1 9  

418 1 396 

42o 384 

416 396 

1854 I I795 

1994 I937 

2188 2213 

2184 2125 

71o 692 

706 694 

378o 376z 

379 z 3841 

378o 3866 

O. 45 

I .  38 

1 . 4 4  

0.  94 

o .  85 

i .  07 

o .  88 

I .  10 

I . 06 

I . . . .  

I , 04 

I .26 

1 . 0 0  

I . 0 6  

1 . 0 6  

I . 0 2  

I .  O 6  

I .  18 

I . O I  

I 1 2  

I . 0 I  

I . 06 

o .  92 

t . o 6  

i .  09 

x .  0 5  

I .. o 3 

i .  03 

o .  99 

i .  03 

1 . 0 3  

I . 0 2  

1 . 0 0  

O. 99 

O. 98 
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5. Other problems. 

5. I.  This last section is frankly conjectural, and is not to be judged by 

the same standards as w167 I--3. 
The problems to which we have applied our method may be divided roughly 

into three classes. The typical problem of the first class is Waring's Problem. 

Our solution of this problem is not yet  as conclusive as we should desire, and 

we have not exhausted the possibilities of our method, even when allowance is 

made for still unpublished work; we cannot at present prove, for example, that  

every large number is the sum of 7 cubes or x6 biquadrates. But our proofs, 

so far as t h e y  go, are complete. 

The typical problem of the second class i s  that  considered in w167 I--3. The 

arguments by which we prove our results are rigorous, but the results depend 

upon the unproved hypothesis R. 

There is a third class of problems, of which Goldbaeh's Problem is typical. 

Here we are unable (with or without Hypothesis R) to offer anything approaching 

to a rigorous proof. What  our method yields is a [ormula, and one which seems 

to stand the test of comparison with the facts. In this concluding section we 

propose to state a number of further formulae of the same kind. Our apology 

for doing so must be (I) that  no similar formulae have been suggested before, 

and that  the process by which they are deduced has at  any rate a certain 

algebraical interest, and (2) that  it seems to us very desirable tha t  (in default 

of proof) the formulae should be checked, and that  we hope tha t  some of the 

many mathematicians interested in the eomputative side of the theory of numbers 

may find them worthy of their attention. 

Conjugate problems: t h e  problem o/ pr ime-pairs .  

5- 2. The problems to which our method is applicable group themselves in 

pairs in an interesting manner which will be most easily understood by an example. 

In Goldbach's Problem we have to study the integral 

where 

I dx 

1 
- -  - 4 - i 9  

l (x)  = log ~ x e ,  x ~- R e  i~' = e " , 
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o r  

(5. 21) 

2 ~  

0 

The formal transformations of this integral to which we are led may be stated 

shortly as follows. We divide up the range of integration into a large num- 

ber of pieces by means of the Farey  ares ~p,q, ~p varying over the interval 

(2P:~--O~,q, 2PT~+Op, ql when x varies over ~,q. We then replace ](x)by the 
~ -- -~ ~ q 

appropriate approximation 

9(q) log (-e-q-(xP-)) 9 ( q ) I  i(~v 2P,( ) ' 
q t 

(p 2 p ~  by u, and the integral 
q 

(5. 22) 

by 

eq{_np) )  p'q e ~-'~iu - . . . . . .  ~du 

(5- 23) 
oo 

[~ e l - - i w  

n eq (-- n P)J i  i----iw)' dw = 2 ~neq (--• p). 
--oo 

We are thus led to the singular series Sz. 

Now suppose that, instead of the integral (5. 21), we consider the integral 

(5- 24) 

2~ 

0 

where now k is a /ixed positive integer. Instead of (5. 22), we have now 

Op, q 

eq(kp)f  ekiU 
oo 

du c~ eq(kp) f -i -d--u 
,~ ~ + u~ 

Acta mathemat/ca. 44. Impvim~ le 16 f~vrier  1922. (~ 
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We are thus led to suppose that  

(5. 25) J(R) ~ 2n ~ ~--~-)! eq(kp) 
1 

when R = e  , ,  n--.oo. 

The series here (which we call for the moment S'2) is the singular series S~ 

with - - k  in the place of n. On the other hand 

2~ 

J(R)  = ~  l o g ~  . ~_.~ log ~ R ~ e  -- .e~i~dqJ=~ 
L ]  

o 

where 
a ~  ~ log  ~ log (~  + k) 

i] both ~ and ~ + k are pr/me, and a~ ~ o otherwise. Hence we obtain 

1 

Here R ~ e  n but the result is easily extended to the case of continuous ap- 

proach to the limit z, and we deduce ~ 

(5- 26) 2 a ~  c~ nS'2. 
~ n  

And from this it would be an easy deduction tha t  the number of prime pairs 

differing by k, and less than a large number n, is asymptotically equivalent to 

n 

(qo-g ; f .  �9 

We are thus led to the following 

Conjecture B. There are in]initely many prime pairs 

/or every even k. I] Pk(n) iS the number o/ ?airs less than n, then 

n ~ - - - I  

where C~ is the constant o] w 4 and. p is an odd prime divisor el k. 

i W e  a p p e a l  a g a i n  h e r e  to  t h e  T a u b e r i a n  t h e o r e m  r e f e r r e d  to a t  t h e  e n d  of 4- z (f, n. i). 
T h i s  t i me ,  of  c o u r s e ,  t h e r e  is  no  q u e s t i o n  o f  an  a l t e r n a t i v e  a r g u m e n t .  

~Note t h a t  S'2 = o if  k is odd,  as  it  s h o u l d  be.  
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I t  will be observed  t ha t  the analysis connec ted  with Conjectures  A a n d  B, 

which deal respec t ive ly  with the equat ions  

n ~ ' + ~ r ,  ~ r=~o~+/c ,  

is subs tan t ia l ly  the  same. I t  is pairs of problems connected  in this m an n e r  tha t  

we call conjugate problems.  

Numerical verilications. 

5. 31. Fo r  k ~ 2 , 4 , 6  we obta in  

2 C 2 n  
(5. 311) Pz(n) c~ (-~-g~,  

2 C ~ n  (5, 312) P'(') 

4 C~n (5 313) P0(n) 

Thus there should be approximately equal numbers o/ prime-pairs di//ering by 2 and 
by 4, but about twice as many di/[ering by 6. The  actual  numbers  of pairs, 

below the limits 

zoo, 500, IOOO, 2000, 3000, 4000, 5o00 
are  

I lO3 9 24 _ _ 9 5  _ 6I 81 125 

9 6 , ~ 7 ~  6 3 86 1 2 I  . . . .  I . . . . . . . . . . . . . . .  

' ,25 x68 I 2ox I 241 

The  cor respondence  is as accura te  as could be desired.  

5. 32. The f i r s t  formula  (5. 311) has been ver i f ied much more  sys temat ic-  

ally. A l i t t le  caut ion has to be exercised in under t ak ing  such a verif ication.  

The  formula  (5. 26) is equivalent ,  when k =  2, to  

(5. 321) ~ ll(m) l l (m + 2) c~ 2C~n; 
rn<n 

and,  w h e n  we pass f rom this formula  to  one for the n u m b er  of pr ime-pairs ,  the 

formula  which arises most  na tu ra l l y  is not  (5. 3 i l )  bu t  1 

1 This formula follows from (5. 321) in exactly the same way that 

~(x) oo Li x 
follows from 

A(m) c,~ x. 
m <::" ~; 
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j " d z  . 
(5. 322) P2(n) c,,o 2 02 (l--og x ~ )  q '  

indeed it is not unreasonable to expect this approximation to be a really good 

one, and much better than the formulae of 4. 4. The formula (5. 322) is nat- 

urally equivalent to (5. 3Ix). But  

11 

= + + ' 

and the second factor on the right hand side is (for such values of n as we 

have to consider) far from negligible. I t  is for this reason that  Brun, when he 

at tempted to deduce a value of the constant in (5. 3z I ) f rom the statistical 

results, was  led to a value seriously in error. 

We therefore take the formula (5. 322) as our basis for comparison, choosing 

the lower limit to be ~. For our statistics as to the actual number of  prime- 

pairs we are indebted to (a) a count up to too,coo made by Gr.AIsHm~ in T878 z 

and (b) a much more extensive count made for us recently by Mrs. G. A. 

STR~ATF~;ILD. The results obtained by Mrs. Streatfeild are as follows. 

I O O 0 0 0  

2 0 0 0 0 0  

300000 

400000 
5 0 0 0 0 0  

600300 

700o00 
800000 

900o00 
IOOOOOO 

9"1 

zC ~" dx 

2 

1224 1246.3 

2159 ! 2179.5 
2992 3035.4 
38oi 3846.I 

4562 4625.6 

5328 I 538~ .5 

6058 t 6118.7 
6763 684o.2 

7469 7548.6 
8164 8z45.6 

Ratio 

i .  oi8 

1,009 
i .o15 
I . 0 1 2  

. o14 
I . 0 1 0  

I 0 1 0  

I . 0 1 I  

I . O l I  

I . 0 1 0  

i The.series is of course divergent, ~ind must be .regarded as closed after a finite number 
of terms, with an error term of lower order than the last ter,u retained. 

J. W. L. GsAm~vm, 'An enumeration of prime-pairs',  Messenger of Mathematics, vol. 8 
(1378), pp. 28--33. Glaisher counts 0,3) as a pair, so that his figure exceeds ours by I. 
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5-33 .  Similar  reasoning  leads us to the following more  genera l  results .  

Con jec tu r e  (]. I [  a , b  are fixed positive integers and (a, b) = i ,  and N (n) is 

the number o/ representations o/ n in the /orm 

then 

n ~ a ~ +  bye', 

unless (n, a ) =  i ,  (n, b) -- i ,  and one and only one el n, a, b is even) But  i/  

these conditions are satis/ied then 

2 0 z n  ( p - - I )  
N(n)  ab (log- ll 

where C7. is the constant o/ w 4, and the product extends over all odd primes p which 

divide n, a, or b. 

0 o n j e c t u r e  D. I] (a, b ) =  i and P(n)  is the number o/ pairs o/ solutions o/ 

a v~' - -  b v~ ~ ]c 

such that ~ '  < n,  then 

n 

unless (k, a) == I ,  (k, b) - -  I ,  and just one o/ k ,  a, b is even. B u t t / t h e s e  conditions 

are satis/ied then 

p ( n )  c 2C.~ n ( ~ )  
�9 l I  ' 

where p is an odd prime /actor o/ k,  a, or b. 

I t  should be clear  t h a t  t h e  t heo rems  p r o v e d  in w167 I - 3  m u s t  be capab le  of 

a s imilar  general isat ion.  Thus  we migh t  inves t iga te  the  n u m b e r  of r epresen ta -  

t ions of n in the  form 

n - - a ~  +bvo ~ + c ~ " ;  

and  here  proof  would be possible,  t hough  o n l y  wi th  the  a s s u m p t i o n  of hypo-  

thesis  R .  We  have  not  pe r fo rmed  the  ac tua l  calculat ions.  

1 This is trivial. If n and a have a common factor, it divides bw", and must therefore 
be ~r which is thus restricted to a finite number of values. If n,a, b are all odd, w" or w a 
must be z. 
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Primes o] the /orms m ~ + I,  am ~ + b m  + c. 

5. 4L Of the four problems mentioned by Landau in his Cambridge address, 

two were Goldbach's problem and the problem of the prime-pairs. The third 

was that  of the existence o/ an in/inity of primes o/ the ]orm m~ + 1.1 
Our method is applicable to this problem also. We h,~ve now to consider 

the integral 
2 ~  

J (R) ~ ~ , ; [ (Re i 'V)  O(Re-iV) e-iV d(p, 

o 

where / (x )  is the same function as before and 

co 

o(x) X m  2 . 

is The approximation for O(~)=O(Re  -i~') on -~v,g 

1 

2 p x  -~z 

where 

h=l 

and Sp, q is the conjugate of Sp, q: and we find, as .an approximation for J (R) ,  

~p,q 
I p~,q ,tt(q) ~ ; e - l u d /  

-o~,q ~ - - i u  n + iu 

We replace the ntegral here by 

c~  

- - i u  + i u  
~ =  ~ V ~ ;  

1 The four th  was tha t  of the  exis tence  of a pr ime be tween  n ~ and (n + I) ~ for every n > o. 
The problem of pr imes  am ~ + 5m + c must  not be confused wi th  the much s impler  ( though 

still  d i f f icu l t )p rob lem of pr imes  included in the  defini te  quadratic form axe+ bxy+cy ~ in two 
independen t  variables. This problem, of course, was solved in the  classical researches  of I)~ I~A 
V~LL~S POUSmN. Our me thod  natural ly leads to de la Vall6e Poussin 's  results,  and the formal veri- 
fication of t hem in this  manner  is not  wi thout  interest .  Here, however ,  our me thod  is plainly 
not the  r ight  one, and could load at best to a proof encumbered  with an unnecessary  hypothes i s  
and far more difficult than  the  accepted proof. 
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and  we are  led to the  fo rmu la  

(5. 4 ix) J(R) c~ I V2 z n S ,  
4 

where  S is the  s ingular  series 

(5. 412) S ~  ~ ~'(q) Sp, (--p). 

R e p e a t i n g  the  a r g u m e n t s  of w 5. 2, we conclude t h a t  the number P(n) o/ primes 
o/ the ]orm me+ I and less than n is given asymptotically by 

v~ 
(5. 413) P(n) c,O~og n S. 

5. 4 2. 
Wr i t ing  

The  s ingular  series (5- 412) m a y  be s u m m e d  b y  the m e t h o d  of w 3-2.  

8 = 2 A q = I  + A ~ +  A ~ + . , - , .  

there  is no diff icul ty  in p rov ing  t h a t  Aqq,=AqAq, if (q, q ' ) =  x. Hence  we 

wri te  1 

where  

S = H Z~, 

;g~r= I + A ~ +  A~r~+ . . . .  I + A . .  

I f  " i 'd=2,  A ~ = o ,  Z . = I .  I f ' ~ > 2 ,  ~ 

and  

1 1) 

1 Even this is a formal process, for (5. 412) is not absolutely convergent. 
2 See D[RIOHLm.T-D~DEKIND, Vorlesungen i~ber Zahlenlheorie, ed. 4 (I8940, PP- 293 et seq. 



48 G .H .  Hardy and J. E. Littlewood. 

Thus  f inally we are led to  

Con jec tu re  E. There are in/initeIy many primes o] the ]orm m"-t-x. 

number P(n) o/ such primes less than n is given asymptotically by 

V~ 
P(n) c,z C ~g n' 

where 

X  =fl (I 
"~Y=3 

The 

5. 43. Generalising the analysis  of w167 5. 4I, 5 .  42, we arr ive  at  

Con jec tu re  F. S~ppose thai a, b, c are integers and a is positive; that (a, b, c) = i ; 

that a + b  and c are not both even; and that D = b  ~ -  4ac is not a square. Then 

there are in/initely many primes o/ the ]orm amJ + bm + c. The number P(n) o/ 

such primes less than n is given asymptotically by 

p(n)  c ~C Vn (~-~-~I) 
' 

where p is a common odd prime divisor o/ a and b, e is i i] a + b is odd and 2 

i / a  + b is even, and 

(5. 432x) C ~ H  I - -  f f . _ I  " 

I t  is ins t ruc t ive  here  to observe the  genesis of the except ional  cases. If  

(a, b, c ) =  d > I ,  there  can obviously  be a t  mos t  one pr ime of the form required.  

In this case Z~ vanishes for eve ry  m for which ~Ld .  If a + b  and c are bo th  

even, am ~ + b m + c  is a lways even:  in this case Z2 vanishes.  If  D = k ' ,  then  

and  

4a(am ~ +bin + c) = (2am +b )  ~ -  k ~, 

4 a ~ =  (2am + b) ' - -  k ~ 

involves 2am + b:t: k j4a, which can be satisfied by  at  most  a finite number  of 

values of m.  In this case no fac tor  Z~ vanishes,  bu t  the  produc t  (5. 4321) 

diverges to zero. 

5. 44. T h e  conjuga te  problem is t h a t  of the  expression of a number  n 

in the  form 

(5. 44!) n = am ~ + bm + "~. 
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H e r e  we are  led ~o 

C o n j e c t u r e  G. Supl:ose that a and b are inte~ers, and a > o, and let N (n) 

be the number o/ representations o/ n in  the ]orm a m  ~ + b m  + ~r. Then i~ n,  a, b 

have a common /aclor, or i /  n and a + b are both even, or i / b  ~ + 4an  is a square, then 

(5- 44z) 

I n  all other cases 

(5- 443) N ( n )  r 

N,., 

f f f . ~  3 ,  ~ r l  1 a 

where ~ is a common odd prime divisor o] a and b, and ~ is x i /  a + b is odd and 

2 i/  a + b  is even. 

T he  fo l lowing  a re  p a r t i c u l a r l y  in t e re s t ing  spec ia l  cases of  this  p ropos i t i on .  

C o n j e c t u r e  H. Every large number n is either a square or the sum o[ a pr ime 

a n d  a square. The  number N ( n )  el representations is given asymptotically by 

(5. 444) N ( n )  ~ - -  I . . . . . . . .  
log  n ~ - -  

~r--3 

T h e r e  does  n o t  seem to  be a n y t h i n g  in m a t h e m a t i c a l  l i t e r a tu r e  c o r r e s p o n d i n g  

to  th is  c o n j e c t u r e :  p r o b a b l y  b e c a u s e ,  the  idea  t h a t  every n u m b e r  is a square ,  

o r  the  sum of a p r ime  a n d  a squa re ,  is r e f u t e d  (even  if I is c o u n t e d  as a p r i m e )  

b y  such  i m m e d i a t e  e x a m p l e s  as  34 and  58. B u t  the  p r o b l e m  of the  r e p r e s e n t a -  

t i on  of  an  odd n u m b e r  in the  f o r m  "t~+ 2 m  ~ has  rece ived  s o m e  a t t e n t i o n ;  a n d  

it  has  been  ver i f ied  t h a t  the  o n l y  odd  n u m b e r s  less t h a n  9ooo,  a n d  n o t  of  the  

f o r m  des i red ,  are  5 777 a n d  5 993 ? 

C o n j e c t u r e  I .  Every large odd number n is the sum o / a  prime and the double 

o/ a s~uare: The number N ( n )  o/ representations is given asymptotically by 

(5. 445) N(n)  c,z lo-g-n I ~ - -  i " 
v ' a '~  3 

1 By S~Ea~; an~l his pupils in x856. See Dickson's Historg (referred to on p. 32) p. 424. 
The tables constructed by Stern were preserved in the library of Hurwitz, and have been very 
kindly placed at our disposal by Mr. G. P61ya. These manuscril~ts also contain a table of 
decompositions of primes q - -  4m + 3 into sums q -----p + 2p ~, where p add pr are primes of the 
form 4 m + i, extending as far as q ---- 2o983, The conjecture that such a decomposition is always 
possible {I being counted as a prime) was made by Lagrango in I775 (see Dickson, t. c., p. 4z4). 

Aeta mathen~allea. 44. Imprlm~ le 17 f~vrler 1922. 7 
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5. 45 We may equally work out the number of  representations of n as 
the sum of a prime and any number of squares. Thus, for example, we find 

Conjecture J .  The numbers o/ representations o/ n in the [orms 

~ ~ + m ~  + m ~  m~ , n = ~ + m ~ + m ~ ,  n-~ ~+ ~+m,~ 

are given asymptotically by the /ormulae 

w h e r e  

(5- 45 II) 

and 

(5. 452) 

w h e r e  

(5, 452~) 

C = ~ + , ~ ( ~  .~ , 

V~= 3 

Here p is an odd prime divisor o / n ,  and representations which di//er only in the 

sign or order O/ the numbers m~, m 2, . . .  are counted as distinct. 
The last pair o f  formulae should be capable of rigorous proof. 

Problems with cubes. 

5. 5- The corresponding problems with cubes have, so far as we are aware, 

never been formulated. The problem which suggests itself first is that  of the 

existence of an infinity of primes of the form mS+ 2 or, more generally, mS+ k, 

where k is any number other than a (positive or negative) cube, 

Hero again our method may be used, but  the algebraical transformations,  

depending, as obviously they must, on the theory of cubic residuacity, are 

naturally a little more complex. As there is in any case no question of  proof, 

we content ourselves with stating a few of the results which are suggested. 

Conjecture K. I] ~ is any ]ixed number other than a (positive or negative) 
cube, then there are in]initely many primes o] the ]orm mS+ k. The number P(n) 

o/ such primes less than n is given asymptotically by 

1 

(5. 51) P(n) c , ~ l ~ n ~  I 
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where 

" ~  I (rood. 3), ' 

and (--  k)~r is equal to i or to - -  I according as - -  k is or is not a cubic residue o/~r. 
2 

Conjecture L. Every large number n is either a cube or the sum o/ a prime 

and a (positive) cube. The number N (n) o/representations is given asymptotically by 

1 

N(n)  log n ~ ~ - -  I ~ - - - -  ~ ( n ) ~ ,  

the range o] values o/ ~ being defined as in K .  

Conjecture M. I[ k is any /ixed number other than zero, there are in/initely 

many primes o] the [orm l a + mS+ k, where l and m are both positive. The number 

P(n) o/ such primes less than n, every prime being counted multiply according to 

its number o/ representations, is given asymptotically by 

(Ii (~))2 r(~_ II  (1-2 Ao,), 

where ~ and  vx are odd primes o / the  [orm 3r + I ,  p tk, ~r ~-k, and 

i/ - - k  is a cubic residue o/ ~r, 

A--2 
A w =  " g ' ( ~ - - I )  

I--A • 9--B--2 
A v  ~ 2 2 

in the contrary case. The positive sign is to be chosen i[ 

~o ~ a + bQ being that complex prime /actor o/ ~ /or which a ~ - -  I ,  b ~ o  (mod. 3); 
the negative in the contrary event. And A and B are de]ined by 

A = 2 a - - b ,  3 B = b ,  4 ~ = A 2 +  27B:.  
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In  particular, when k = r, the number o[ primes l a + mS + I is given asymp- 
totically by 

P ( n )  ~ . . . . . . . . . . . . . . . . .  A - -  2 I, 
1.(~) IognlI~. ( I - W ' ( ~  - I !  

primes susceptible o/ multiple representation being counted mvltiply. 
Conjecture N. There are infinitely many primes o/ the [orm k s + l 3 +rid, 

where k, l, m are all positive. The number P(n) el such primes tess than n, primes 
susceptible of multiple representalion being counted multiply, is given asymptotically by 

P(n) (I" 4 z n 

where ~ is a prime o/ the /orm 3m + I, and A has the meaning explained under M. 

Triplets and other sequences o/ wimes.  

5. 61. I t  is plain that  the numbers ~ , ~ + 2 , ~ +  4 cannot all bep r ime ,  
for at least one of the three is divisible by 3. But it is possible tha t  
~ , ~ - 2 , ~ + 6  or ~ , m ~  4 , ~ + 6  should all be prime. I t  is natural to enquire 
whether our method is applicable in principle to the investigation of the 

distribution of triplets and longer sequences. 
The general case raises very interesting questions as to the density of the 

distribution of primes, and it will be convenient, to begin by discussing them. 

We write 

(5- 6 ~ )  .ofx) .... iim (~,,: (n ~ x ) - -  Mn)) ,  

so that  ~ !x )=  r is t h e  greatest number of primes that  occurs indefinitely 

often in a sequence n + I ,  n + 2  . . . .  , n + [ x ]  of [x] consecutive integers. The 
existence of an infinity of primes shows that  Q(x)>I  for x > i ,  and nothing 

more than ~his is known; but of course Conjecture B involves q(x)>:2 for x__>~3. 
I t  is plain" that  the determination of a lower bound for q(x) is a problem of 

exceptional depth. 
The problem of an upper bound has greater possibilities. We proceed to 

prove, by a simple extension of an argument  due to Legendrel,  

t See Landau, p. 67. 
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T h e o r e m  G. I /  ~ > o then 

- - U  X 
e ( x ) < ( I + ~ ) e  f o g - ] o g x  (X>Xo=XAe)) ,  

where C is Euler's constant. More generally, i[ N (x, n) is the number o[ the integers 

n + i , n  + 2 ,  . . . . .  n + Ix] that are not divisible by any prime less than or equal to 
log x, then 

........ - - C  X 
o ~ ( x ) = ~ l i m N ( x , n ) < ( r + e ) e  log-]ogx (x>x.,(e)). 

I t  is wel l -known t h a t  the  n u m b e r  of the  in tegers  1 , 2  . . . . .  [y], no t  divisible 

b y  a n y  one of the  pr imes  p , ,  P2 . . . . .  p~, is 

+ z . . . .  

where  the i - th s u m m a t i o n  is t a k e n  over  all combina t ions  of the  v p r imes  i a t  

a t ime.  Since the  n u m b e r  of t e r m s  in the to ta l  s u m m a t i o n  is 2", this is 

- - -  ( ) (  ( Y " - + 0 ( 2  ~ ) = y  I - -  I I - - ~  I - -  

We now take  pt ,  P 2 , - . - ,  P~ to be the  first  v pr imes,  wri te  n + x  and n 

successively for y,  sub t rac t ,  and  t ake  the  uppe r  l imit  of the  difference as n - - ~ .  

We  ob ta in  

B u t  

=_:/ I -  c~ log y 

as y ~ 0o.1 I f  we t ake  y = log x, and  p~ to be the  g rea t e s t  p r ime  no t  less t han  y, 

we h a v e  

r < p~, <_ 10g x, 2 ~ = o log tog x ' 

a(x) < (I + ~) e-C x 
l o g l o g x  ( x > x  o(e)), 

t he  des i red  resul t .  

L a n d a u ,  p .  14o. 
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An examinat ion  of the pr imes less t h an  200 suggests forc ibly  t h a t  

e(x)s (x> 2). 

B u t  a l though the methods  we are abou t  to explain lead  to  s tr iking conjec- 

tural  lower bounds,  t hey  th row no l ight on the problem of an  uppe r  bound.  

W e  have  not  succeeded in proving,  even  with our  addi t ional  hypothes is ,  more  

t han  the  ~>elementary~ Theorem G. We pass on the re fore  to our  main  topic.  

5. 62. We consider  now the problem of the occurrence of groups of pr imes 

of the form 

n , n + a t ,  n ba.~, . . . ,  n + a m ,  

where a~, a ~ , . . . ,  am are  d is t inc t  posi t ive integers.  We write for b rev i ty  

Ira(x) = 2 A ('a~) ~.1('~ § a,)  . . Jl(~r + am) x ~ .  

Then,  if (h, k ) =  i ,  we have 

(5. 6zI) r a ' l m ( r ' e k ( h ) )  = ~ t ( ~ ) _ / 1 ( ~  +a~) . . .  _/l(~r +a ,n ) r2~+" , '~eu(~rh)  

2s~ 

. - -  2;,r 2 ~ 4 ( ~ )  . . .  ~.l(~r + a m _ l ) r ~ e ~ i ~ ~  2 d l ( ' a ~ , r ~ e - ~ i ~  e"mi~~ 

O 

2.,r 

i't._, 
0 

2_p~r + 
If cp = 0, r - - I ,  0 ~  o, and  0 is suff icient ly small in compar ison with 

q 

I - -  r,  then  

] ( r e_ i ~ )cx~  z (q )  
I - -  r e  - i O  ' 

where 
!l (q) 

z(~) ,p(q) 

Let  us assume for the  momen t  t h a t  

],,,-1 ( r d * )  c~ gin-1 ~ I - -  r d o 

if qJ -~ -P' O, r ~  z and  0 is suff icient ly small. Then  our  m e t h o d  leads us to  write q ,+  
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2 ~  
I ' 2 k a r  

0 

i dO 

P q ~p, q 

C . Z l _ i . ~ z ( q ) g , , , _ !  § k! I q l '  
P,  q 

on replacing the integral 

suggests tha t  

by one extended from --zr to ~.  

(5. 622) ],~ (r) c,~ gm (o )  
X - - r  

Thus (5. 621) 

where gm is determined by the recurrence formula 

and 

(S. 624) 

P, q 

From this recurrence formula we obtain without difficulty 

(5-625) .q,~ (o) = Sm ---- ~ l l%(qr) g(Q)e a , p , . ,  
P h  q t ,  �9 � 9  P r o ,  q m  r ~ l  

where qr runs through all positive integral values, Pr through all positive values 

legs than and prime to q,~ and Q is the number such that  

P p~ +p2 + . . .  + p_~, (P,  Q) = 1. 
=- q l  q2 q,,, 

If we sum with respect to the p's, we obtain a result which we shall write in 

the form 

(5. 6251) S,,~ = ~ A ( q ~ ,  q2 . . . . .  q,,,). 
qt~ q2, � 9  qt}t 

We shall see presently that  the multiple series (5. 6251) is absolutely con- 

vergent. 

For greater precision of statement we now introduce a detinite hypothesis. 
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Hypothesis X. I [  m > o, and r ~ I ,  lhen 

Sm (5. 626) [,, (r) oo . . . .  , 
I - - r  

where Sm is .qiven by (5- 625) and (5. 6251). 
Our deduct ions  from this hypothes is  will be made  rigorously,  and we shall 

descr ibe the  results  as Theorems X I, X 2 . . . . .  

5. 53. F rom (5. 526) it follows, by  the a rgument  of 4- 2, tha t  

x 
(5- 631) P (x; o, a~, a2 . . . . .  a,n) c,~ Sm (log x) m'  

as x ~ ,  where the le/t-hand side denotes the number o / g r o u p s  o / m  + I pr imes  

n, n + a~ . . . . .  n + a , ,  o] which all lhe members are less than x: 

We proceed to eva lua te  Sin. In the  first place we observe tha t  A ( g ,  q2 . . . . .  q,,,) 

is zero if any  q has a square  factor.  Next  we have 

(5. 632) A (q, q',, q2 q',, - . . ,  qm q'm) = A (q,, q2 . . . .  qm) A (q',, q'2, . . . ,  q'~), 

provided  (qr, qrs)= I for all values of r and s. For,  if we wri te  

~-~+ q,-~ q~ q',. q,.' 

so tha t  q~= q~q'~, and suppose  tha t  p~ and p'~ run through complete  sets of 
residues prime to q~ (or q'~) and incongruent  to modulus  q~ (or q',.), then p~ runs 

through a similar set of residues for modulus  qr. Also (Q, Q ' ) = I  and so 
(PQ' + P 'Q ,  QQ') = I .  Hence,  since 

~ P p '  p Q '  + P 'Q 

the  Q associated with ~ is QQ'. Since xiqq ~) = x(q)x(q ~) if ( q , q ' ) =  I i  (5. 632) 
qr 

follows a t  once. 

Assuming then the absolute  convergence,  more convenient ly  establ ished 
later,  of the  series and the product ,  we have 

(5. 633) S m =  ~ A (q,, q~, . . . ,  q,n) ~ H X (~)  = H X , n (~ )  = I I X , n ( ~ ;  a, . . . . .  a,~), 
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where 

(5. 634) X ( ' ~ ) = I  + ~ 1 2 ~ ( ' ~  , I ,  I , . , . ,  I ) +  ~ 2 A ( ~ ' ,  ~ ' ;  I . . . . .  I ) - -~ - . . -  

+ ~ r  A ( ~ ,  ~ ,  ~ ,  . . :t) + . . .  + A ( ' ~ ,  ~ ,  ~ ,  . . ., "~), 

and where ~,~ is ex tended over all A's in which r of the m pla'ces are filled by  

~ ' s  and the remaining m - - r  by x's. 

Our next  step is to evaluate  the A's corresponding to a prime ~r. Writ ing 

z = Z ( ~ )  . . . . .  

by a 'm', 

and so 

(5. 635) 

I 
, we have first, when only one place, say the first, is filled 

" / f f - - I  

q~ ~--~, q~ = I ( r  > I) ,  p r =  o ( r >  I) ,  Q = ~ ,  

A ('g, I ,  I , . . . . .  I ) = (Z (~a~)) ~ ~ e~ (a l  p) = x ~ c ~ ( a , ) .  

(p, ~)= 1 

When r >  r places, say  the first r,  are filled by g ' s ,  we have similarly 

A ( ~ ,  ~ ,  ~ . . . . .  I )  = x~ ~ e~ (a ,  p, + . . . + a~p~) z(Q), 
pl ,p '2 , . .  ",Pr 

where the p's run through the numbers  I ,  2 . . . . .  ~ - -  I ,  and Q is determined by 

Clearly 

P p ~ + p ~ + . . . + p ~ .  
( P ,  Q ) =  I ,  (2 = vr 

O = I  ( ~  p ~  O (mod. ~r)), Q ---- ~ r ( ~  p-l- o (mod. ~r)). 

Hence 

(5. 636) A ( ~ , ~ , ~  . . . .  , I ) = x ~ + !  e~  a~p,  + 

1/I, .. ",Pr 

+ 8 ~  Za 
pl"l- p~ + . . . . . .  0 

a ffi 1 pl+p~+ �9 �9 �9 ~-0 

Acta  mathemat iea .  44. Imprim6 le 17 f6vrier 1922. 
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B = 2 (2asr ) 

is evidently a function of ~ , a  1 . . . . .  ar which is unaltered by a permutation of 

at . . . . .  a~. We denote it (dropping the reference to ~') by B m ( a l , a 2  . . . .  , a~), 

the suffix m being used to recM1 that  a , , a 2 , . . . ,  at, or rather the a's that  

replace them in the general case, are selected from aj ,  a2 . . . . .  am. 

Then 

(5.637) B, ,~(a,a  2 ' . . . , a ~ ) = (  ~,~ - -  ~,~ l e ~ ( a ~ p 2 + . . . + a , . p ~ , a L ( p 2 + .  +p~)) 
~ p ~ , p a , . . . , p  r , ~ z + p a §  

= ~,~ev~((a2--al)p2 + - . .  + (a~ - -a t )  p~) - -  Y_~e~((a3--a2) p~ + . . .  + ( a ~ a 2 ) p ~ )  + . . .  
p 2 ~ *  . . ,  p ~ .  ~ "  " " ~ P F  

F r 

: H , c ~ ( a ~ , - - a , > - - H c ~ ( a : - - a ~ ) + . . .  

Here we are supposing r ~ 2 .  We shall adopt  the convention B,n (a~)=  o. 

5. 64. We now digress for a moment to establish the absolute convergence 

of our product and multiple series. We have 

(5. 6 4 x )  c ~ ( k ) = ~ - - ~  (~rlk), e ~ ( k ) = - - x  (~%k). 

Hence, when "~ is large, every c~ occurring in (5- 635), (5. 636), or (5. 637) 

is equal to - - i .  ~ I t  follows t h a t  

K I A(~r, ~r, ~r . . . . .  ~)l< K x ~ < ~  (r>~); 

and so, since A(q~, q , , . . . )  is the product of A's each invol4ing only a single 

prime ~ ,  tha t  the multiple series and the product in (5. 633)are absolutely 

convergent. 

5. 65. 

the result being true 

B, , , (a , ) .  Hence 

Returning now to X( '~ ) ,  we have, for v > i ,  

A ( ' ~ , ~ , m ,  . . .  I ) ~ z  ~+1 c ~ r ( a , ) - - m B ~ ( a t , a 2 , . . . , a ~  , 

for r----I in virtue of (5. 635) and our convention as to 

It is here that ws use the condition a r A.a s 



Partitio numerorum. 

(5- 651) 

Ill: On the expression of a number as a sum of primes. 

i $* m X m ( ~ ) = I  + x r + l f l c ~ ( a , ) - - ~ _ ~ x r + 1 2 r B = ( a , , a 2  . . . . .  ar) 

=l+Z (I  -]- XC/~(ar ) ) - -  I - - $ X  xrCrn,, 
. r~2 

= Y~ -- ~x Z~, 

say,  where 

(5. 652) Cm, r = ~ , .B , , (a~ ,  a, . . . . .  at), 
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Cm+m,r = Cm, r + c~(as - -  am +1) - -  Bm (a,, a2 . . . . .  a t - l )  

and  therefore  

= Cm, r-b 2 ' f l  cv~(a,--a=+l) --Cm, r-1; 
$ml 

(5. 654) 
m4-1 m + l  r - -1  m + l  

Z = + , =  2 x ~ C = + , , ~ =  Zm + 2 x  r 2 ' n  c v ~ < a , - - a = + , ) -  2 x r C m ,  r_l 
r - -2  r ~ 2  s- - I  rm2 

(= ) 
= (I--~)ZmnuX H ( I  - ~ - X C l ~ ; ~ ( G r - - a m + l ) )  --I �9 

r--I 

Here  ~ '  denotes  a sum t aken  over  the  combinat ions  of a , ,  a = , . . . ,  am, r - - I  at  

a t ime;  and the  equa t ion  holds even for r = m + I  if we in t e rp re t  Gin, m+1 as zero. 

Hence ,  by (5- 637), 

Cm+j,r=C,, ,r  § 2 ' B ( a m + , , a t , a 2 , . . . , a , - - l )  (r=>2). 

m 

= x( I - -  x) + x ~ ( I + c~(am,+l) ) I~  (I + xc~(ar)) .  
r--1 

Also 

the  summat ion  being t aken  over  all  combinat ions  (wi thout  reference to order) 

of a i ,  . . . ,  am taken  r a t  a t ime. 

Now 
I,n 

(5.653) Y..-,--(~--~.)Y~--I-x--(I--~)'+xll(I+xc~(a~))(I+xc~r(a,.+l)--I+X) 
r - -1  
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Using (5. 65~), (5. 653), and (6. 654), and observing thar x ( x - - x ) = - - ~ x  ~, we 

obtain 

(5. 655) 

(5. 656 ) 

5. 66. 

(5. 66i) 

where 

(5. 66z) 

X,,,+, (~ )  - ( i  - -  x) Xm( ~ )  = x*-(i + c~(a,, ,+,)) 1 l ( ~  + ~c~(a~) ) - -  

- -  ~ x  ~ f i  (I + xc ,~  (a~ - a m + ~ ) ) .  
r--1 

To this recurrence formula we add the value of Xm(~)  for m = i ,  viz. 

X~ ( ~ )  = ~ + A ( ~ )  = ~ + ~ ( a , ) .  

We can now deduce an exceedingly s imple  formula for X~(~') ,  viz, 

xm( ) 

is the number o] distinct residues o] o, a, ,  a 2 . . . . .  am (mod. ~ ) .  

This is readily proved by  induction.  Le t  us denote  the right hand side of 

(5. 66I) by X'm; and let us consider first She case m = I .  

If a ~ o  (rood. ~ )  we have r = I ,  c ~ ( a ~ ) = ~ I ;  if a , ~ o  we have ~ = 2 ,  

c~(a,) ~ -  i .  In  either ease X, = X'~. 

Now suppose the result  t rue  for m,  and  consider Xm+l. There are three 

cases: 
(i) am+a~o  (mod. ~ ) .  Here 

"Ym+l = 'I'm, X l m + l  "lll'-- I xlra" = ( I  - -  x)  X:ra,. 

On the  other  hand i + cg(a,,+l) = ~;, cg(ar am ~1) ~ cg(a, ) ;  the r ight  hand side 

of (5. 655) vanishes;  and so 

X~14-1 = (I  - -  ~) Xm = (I --~) i 'm  ~ i 'm-I-1.  

-- ~ for some r ~ m .  Here again ~ 'm+l=, '~ .  On the one (ii) a m + l = a ~ o  

hand  we have ,  as before, X'm+l= ( ~ - - x ) X ' , ~ .  On the other  

i + c ~ ( a , ~ + l ) =  o, i +xc~(an-- -am+l)  = I - -  I c~(o) = o; 

the r ight  hand side of (5. 665) vanishes, and  Xm + l= X ' m + l  as before. 
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I I (iii) am+ayo, am+x~ar(r<m) .  Here ~ ] , n §  $ 'm-~- I = ~ "~ I.  Also all the c's 
concerned are equal to - - z .  Hence 

X,.+~ -- (i -- x) X., = -- ~rx ~ (i -- z)'- --- .(, -- z) m+1, 

or, since X,~ =-,Vm, 

Xm+~ = (i --x) . (, --x)'~(, + (~ - ~).) + *(t - x),,,+~ 

= ( I -  X)m+l(I "~-'lgX) : Xtm§ 

This completes t h e  proof. 
We now restate our conclusions in a more symmetrical form. 

Theorem X i.* Let b,, b2 . . . . .  b~ be m distinct integers, and P(x;  b,, b, . . . . .  b~) 

the number o/ groups n + b,, n + b2 . . . . . . .  , n + b~ between I and x ana consisting 

whoUy o/ primes. Then 

P(x)  c~ G(b,, b2 . . . . .  b~) L i , , ( x )  (5. 663) 

w h e n  x ..---, ~ , w h e r e  

(5. 664) 

= ~(~;  b~, b.,,. ., bin) i:9 the number o/ distinct residues o/ b~, b,, . . . . .  b,, to mo- 

dulus ~ ,  and 

d u  . 
Li,~(x) ~,.  (log u)"  

2 

Further 

(5. 665) G(b,, b2 . . . .  ,'b~) = CmH (b, , b, . . . . .  b,,,) 

where 

(5. 666) C.= H t i ~ / " - ' ~ - - m / ,  
W'>m 

(5. 667) 
= ' ~ i J  

w" > m 

and ._t is the product o/ the di//erences o[ the b's. 

* To avoid any possible misunders tanding,  we  repeat  tha t  these  theorems  are consequences 

o f  Hyl~othesis X: 
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The change from o, al . . . . .  a,,~ to b~,b2 . . . .  , b,~ is obtained by  writing 

n--b~ for n and m for m + I .  The expression of G as the product  of the con- 

stant G,~ (depending only on m) and the finite expression H follows immediately 
from the fact that  v = m  if ~ + d ,  ~ >  m. 

5. 67. There are plainly many directions in which it would be possible  to 

extend these investigations. We may ask, for example, whether there are 

indefinitely recurring pairs, triplets, or longer sequences of primes subject  to 

further restrictions, such as that  .of belonging to specified quadratic forms. We 

have considered one problem of this character only, which is interesting in that  

it combines those contemplated in Conjectures B and E.  Is there an infinity 
of pairs of primes of the forms m s + i ,  mS+ 3 ? The result suggested is as follows. 

Conjecture P. There are in/initely many  pTime pairs o / t he /o rm  m s + i ,  m s + 3. 

The number o/ such pairs less than n is given asymptotically by 

O (n)c,~ (log n) -~ (log n) ~ --S ( ~ I ) u  

where r i s  o, 2, or 4 ac~cording as neither, one, or both o / - -  I and - -  3 are quadratic 

residues o/ ~ .  

Numerical  veri]ications. 

5-68. A number of our conjectures have been tested numerically :by Mrs. 

STREATFEILD, Dr. A. E. WESTERI% and Mr. O. WESTERN. We state here a few 

of their results, reserving a fuller discussion of them for publication elsewhere. 

The first of these numerical tests apply to conjectures :E and P.  In applying 

such tests we work (for reasons similar to those explained in 4 .4  and 5.32) not 
with the actual formulae stated in the enunciations of those conjectures, bu t  

with the asymptot ical ly  equivalent formulae 
n 

I / "  d x  I c , ~ - C 3  - -  c ,o~C L i V n  
P (n) 2 g x  log x 2 

n 

(5-682) Q ( n ) c , o 3 C  ~" ~ d x  c,~3C L i 2 V ~ .  
2 ~] Vx(Iog  x) s 4 

The number of primes less than 9oooooo and of the prime form m S + i  is 

3Ol. The number given by (5. 681) is 302.6. The ratio is I .  co5, and She agree- 

ment is all t.hat could be desired. 
The number of prime-pairs m' + i and m~+ 3, both of whose members are 

less than 9oooooo, is 57- The value given by (5. 582)is  48,9. The ratio is 
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858. The numbers concerned are naturally rather small, but the result is perhaps 

a little disappointing, 

A more systematic test has been applied to the formulae for triplets and 

quadruplets of primes, the particular groups considered being 

~ ,  ~ + 2 ,  ~ + 6 ;  ~ ,  ~ + 4 ,  ~ ' + 6 ;  

~ ,  ~ + 2 ,  ~ §  ~ r + 8 ;  ~ ,  ~ + 4 ,  " t~+6 ,  " ~ + i o .  

The two kinds of triplets should occur with the same frequency. On the other 

hand there should be twice as many quadruplets of the second type as of the 

first. For o, 2, 6, 8 have 4 distinct residues to modulus 5 and o, 4, 6, IO but 
3, while for all other moduli the number of residues is the same; and the ratio 

5- -3 :5- -4  is 2. The actual results are shown in the following table. 

Triplets. 

108 

2 . 105 

3 �9 1o'S 

4 �9 105 

5 - 105 

6 .  lO s 

7 - IO8 

8.. IO s 

9 ;  105 

10 6 

Ps (x; o, 2, 6) 

260 

417 

566  

718 

8 3 3  

95 ~ 

Io73 

1195 

I295 

1398 

Ca Li3 (x) 

270.78 

440.71 

589.89 

727.43 

857 .IO 

980.92 

1 i o o . i 6  

1215.64 

1327.97 

1437.59 

Rat io  

I .  o41 

I 057 

i 042 

I O13 

1 0 2 9  

1 033 

I 0 2 5  

1 o17 

I . 0 2 5  

i . o 2 8  

I 
lOa(x; o, 4, 6)! 

249 

425 

588 

748 

881 

1oo8 

1133 

1231 

1331 

I443 

Ratio 

1.o87 

I .  037 

1 .oo  3 

0 .972 

0.973 

0 .973 

o.971 

0.988 

o .998  

o .996  

Quadruplets. 

x P,(x;o, 2,6,8 ~TC, Li,(x) Ratio P,(x;o, 4,6,1o) 27C, Li,(x) Ratio 

10/5 

2 . IO 5 

3 105 

4 IO5 

5 105 

6 lO s 

7 lO8 

8 Io 5 

9 lO5 

106 

38 

52 

7o 

87 

lO 3 

117 

133 

141 

i56 

i66 

40.41 

6 i . i 8  

78.62 

94 .28  

lO8.75 

122.36 

135.29 

147.69 

159.64 

171.21 

i .063 

1.177 
i . i 2 3  

1.084 

i .  056 

i .045 

i . o 1 7  

1.o47 

I .  023 

1. o3t 

8 0  

I 2 4  

i6o 

194 

2 1 9  

239 

263 

285 

299 

316 

80 82 

122 35 

157 24 

188 55 

217 5 ~ 

244 71 

27o.59 

295.39 

319.29 

342.4  z 

I . OIO 

o 987 

o 983 

o 972 

o 993 

I 024 

I 029 

I 036 

1 068 

I 0 8 4  
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Here C~ and C4 are the constants  of Theorem X i .  The results are on the whole 

very sat isfactory,  though there is a curious deficiency of quadruplets  of the 

second type  between 8ooooo and IOOOOOO. 

5. 691. We re turn  to the problems connected with the funct ion 

Q ( x ) = l i m  ( ~ ( n + x ) - - ~ ( n ) ) .  We shall adhere to the nota t ion  of Theorem X i ,  
n ~ o o  

and shall suppose in addi t ion tha t  x is integral and tha t  o < b l < b 2 < . . . < b  'n. 

I t  follows from Theorem X I tha t ,  if H(bt ,  b.~ . . . . .  bm)+o, groups n + b l ,  n+b2 . . . . .  , 

n +  bm consisting wholly of primes cont inual ly  recur, and we shal l  say, when 

this happens,  t h a t  bl ,b:  . . . . .  bm is a possible m-group of b's. We say also t ha t  

the n + bj . . . . .  n + b,~ is an m-group of primes. If, in a possible group, m = e(x), 

where x ~- b,~-- b~ + I ,  we shall call the group, e i ther  of primes or of b's, a maxi-  

mum group. A set of x consecutive positive integers we call an x-sequence; 

and w.e say tha t  the group n + b ~ , . . . , n + b m i s  contained in the (bm- -b~+ i ) -  

sequence bj < c < b m ,  and tha t  its length is b,~--b~ + i .  

Theorem X 2. I /  bt, b: . . . .  , b,,, have a missing residue (mod. ~ ) [ o r  each 

~a'< m, then these b's /orm a possible group. 

This is an immediate  consequence of Theorem X i ,  since v < ~ - -  i for ~ > m. 

Theorem X 3. Let M ( x ,  n) be the number o/ distinct integers c~, c2 . . . . . .  cM, 

in the interval n < e < n + x ,  which are not divisible by any prime less than or 

equal to 

and let 

Then 

~(x) = e ( x )  + + 1, 

o,(x) --- Max MCx, n). 
(n) 

~ , ( x )  ---  ~(x). 

Let  Q(x,p) be the number  obta ined in place of el(x) when the ~(x) t ha t  

occurs in the definit ion of el(z) is replaced by it. Clearly we have 

(5" 6911) 

and 

(5" 69x2) 

~(x, ~, - I)> ~(x, ~,) > ~(x) 
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--- e ( x ,  ~ 0 < , u  

e ( x ,  t,) = e (x ) .  

For  let dj, d2, �9 �9 d~ be an increasing set of positive integers with the properties 

(characteristic o f  a set of v = q(x, IL) such integers) t ha t  (a) there is an n such 

t h a t  n + d t  . . . .  , n + d ~  are not  divisible by a n y  prime less than  or equal to t t ,  

and (b) d~ - -  dl + I ~ x. Then n + d~ . . . . .  n + d~ form a 'possible' g r o u p  of b's, 

since they  lack the residue o for every prime less than  or equal to ~. Hence 

q(x)>_~ = q(x, ~0, and  so, by  (5.69II) ,  e(x)-~--q(x, ,u). 
Next  we observe t ha t  q(x, ~l)=Q(x) for !l = x, since the inequal i ty  v<~t  is 

clearly satisfied in this case. Le t  now ,u o be the least ~, greater  than  or equal 

to e(x), for which tg(x, t l0)= q(x). Then q(x)<t toS_x .  We have then 

(5, 69x4) 

and so 

b y ( 5 .  6913). 

Hence 

e ( z ,  ~,0) = e (x ) ,  e (x ,  ~,o - -  ~) > r  

e(x, ~lo - -  I) > ~to - -  I ,  

Thus 

,'o < q(x, ."o-- I) < ~(x, ,"o) + [ ~ J  + I = q(x) + [,To] + 

~Q(x) + [-(x)] + I = ~(x). 

~(z)  = e (x ,  ~0)__> Q(x, ~(~))  = Ql(~)" 

But  it is evident  tha t  q , (x)>q(x) ,  and therefore r  

I t  follows from the theorem that ,  in a max imum group o/ primes o] length 
x, the remaining numbers o] the x-sequence are all divisible by primes less than or 
equal to ~(x). We shall see present ly  t ha t  (on hypothesis  X) ~(x )<e(x )+  log x 

for large values of x. 

5- 692. We consider now the problem of a lower bound for q(x). Le t  p, 

denote  the s-th prime. 

Theorem X 4- Let r ~ r(n) be defined, /or every value o/ n,  by 

pr <= n < P~+l. 

Then p~+l, pr+e . . . . .  pr+~ is a possible n-group o/ b's. 
Acta mathematica. 44, Imprim6 le 28 avril 1922. 9 
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For the primes less than or equal to n are P~,P2 . . . . .  lot and the b's lack 

the residue o for each of them. 

From Theorem X 4 we deduce at  once 

Theorem X 5. I /  x ~ pr+n - -  ~gr+l + I ,  pr<:n <( Pr+l, then  

(x) > n. 

As a numerical example, let n--76501.  

Hence 

Thus 

We have ~7~5=76493, T ~ = 7 6 5 o 7  . 

r = 7 5 2 5 ,  n + r=84o26,  pn+~=io765o 3 

x=Io765o3--765o7 + 1=999997. 

Q(I000000)~_7650I. 

We may compare this with the numbers of primes in the first, second, and third 

millions, viz. 

78498 , 70433, 67885. 

Theorem X 5 provides a lower limit for Q(x) when x has a certain form: 

we proceed to consider the case when x is unrestricted: 

Theorem X 6. W e  have  

/or  s u l l i c i e n t l y  large va lues  o I x .  

Let 

Q(x) > log x 

When m is large 

p,~ ---- m (log m + log log m) --  m + 0 (m 
log log m I 

Then we have, by straightforward calculations, 

Take n ~ p , .  Then 

/log log y)~). = U ( 1 - - - - -  + 0 ~  ~ 
~'~ ;ffi~ log y 

n + r = ~ (1 + o t l~ I~ log y , logyY)2)' 



Partitio numerorum. III: On the expression of a number as a sum of primes. 67 

O l l~ log y/2/ 
I t  P ~ + r = Y ( I  l o g y  

X = p n §  ~ p r + l  + I < P n + r  - -  P~" 

( 2 +ol ,ogy) ) 3 y 
= y  I-- log-y ~ logy < y 21ogy 

when y is large. Thus 

Z ) >  X > 0( =0( ) = n = p ,  Y Y 
log y (logy)* 

lv_(log v)'t + O / (log y p  / 

g 

> log--~" 

Since y is arbi t rary,  so is z, a n d  the theorem is proved.  

5. 693. We conclude our  discussion of r wi th  an account  of one or two 

par t icular  cases. For  a given x i t  is, of course, theoret ical ly  possible to d e t e r -  

mine the max imum number  of .integers in an x-sequence t h a t  are not  divisible 

by any  prime less than  x. On hypothesis  X,  this number  is O(x). Thus 

L. AUBRY t has shown t h a t  30 consecutive odd integers cannot  contain more than  

15 primes (or more than  15 numbees not  divisible by 2; 3, 5, or 7)- Thus  

0(59)<15.  On the other  hand  if we take, in Theorem X 5, n = I 5 ,  r - - 6 ,  we 

see t h a t  the  15 primes from 17 to 73 give a possible group of b's. Hence, on 
hypothesis  X,  

Q(59) > Q(57) = 0(73 - -  I7 + I) ~ 15; 

and so g(59)~ 15. The value of ~(59) is I7. 
Similarly a 35-sequence cannot  contain more than  io numbers not  divisible 

by 2, 3, or 5, b u t  the Io primes from 13 to 47, and  therefore the numbers o, 4, 

6, io, 16, 18, 24, 28, 30, 34, form a possible io-group of b's, so tha t  Q(35) ~ io 

= ~ (35) - -  I .  A str iking example of a maximum prime group n + b~ . . . .  , n + blo, 

corresponding to this group of b's, is provided by n = 113143 . 

The best example of a close approach by e(x) to ~r(z) occurs when x = 97- 

Consider "the 24 primes from 17 to 113. They are a possible group Of b's if they  

have a missing residue for each prime less than  24~ We have only to test  17, 

19, 23, and we find t h a t  17 lacks the residue 8, 19 lacks i and i i ,  and 23 lacks 

3, 12, i6, and  22. Hence on hypothesis  X, 0(97)>24.  On the other  hand it 

L. E. DICKSON, l, c., re}. I, p. 355. 
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may be shown that  a 97-sequence cannot contain 25 numbers not divisible by 

2, 3, 5, 7, II,  or I3. Let us denote the range n < x < n + 9 6  by R , .  There 

is one and only one value of n, not greater than 2 . 3 . 5 . 7 =  2xo, for which 

R,, contains 25 numbers not divisible by 2, 3, 5, or 7, viz. n = i o i .  If then 

n < z. 3 . 5 . 7 .  xI, and Rn contains z5 numbers not divisible by 2, 3, 5, 7, or  I i ,  n 
must be one of the numbers IOi + 2xom ( m = o , i  . . . . .  !o); and on examination 

it proves that  we may exclude all cases but m =  xo. Repeating the argument 

we see that,  if n<2.3 .5 .7 . I I . I3 ,  and R~ contains z5 numbers not divisible by 

2, 3, 5, 7, ix, or I3, then n must be one of the numbers n = 22ol .~2 2310 ~-~ 

(m = o, i , . . . ,  xz). All these turn out to be impossible and, since any R~ may 

be reduced (meal. 2.3-... I3), it follows that  no R,  can contain more than 24 

numbers not divisible by a prime less than or equal to i3. A [ortiori it follows 

that  o,(97)<24, and so (on hypothesis X) r  Since ~r(97)= z 5, the dif- 
ference q - - ~  is here unity. Beyond z = 97 it would seem that  q(x) falls further 

below z(x),  at least within any range in which calculation is practicable. 

Conclusion. 

5. 7. We trust  tha t  it will not be supposed that  we attach any exaggerated 

importance to the speculations which we" have set out in this last section. We 

have no t  forgotten that  in pure mathematics, and in the Theory of Numbers in 

particular, ' it  is only proof that  counts'. I t  is quite possible, in the light of 

the history of the subject, that  the whole of our speculations may be ill-:founded. 

Such evidence as there is points, for what it is worth, in iihe opposite direction. 

In any case it .may be useful that,  finding ourselves in possession of an apparently 

f ru i t fu l  method, we should develop some of  its consequences to the full, even 

where accurate investigation is beyond our powers. 

Postscript. 

(i). Prof. Landau has called our at tention to the following passage in the 

Habilitationsschri[t of PILTZ ('t3ber die H/tufigkeit der Primzahlen in arithmetischen 

Progressionen und fiber verwandte Gesetze', Jena, I884), pp. 46=47: 
~Ferner wiederholen sieh gewisse Gruppierungen der Primzahlen mit gewisser 

RegelmEssigkeit, so ist z. B .  die 'durchschnittl iche H~ufigkeit der  Gruppen yon 
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je 2 Primzahlen, die in gegebenem Abstand aufeinanderfolgen, ffir die ungef~hre 

GrSsse x der Primzahlen, proportional {~x~, wobei allerdings dieser Ausdruck je 

nach dem gegebenen Abstand mit verschiedenen cons tan ten  Faktoren behaftet  

i 
ist, die H~ufigkeit einer Gruppe yon 3 Primzahlen proportional { ~  und so 

fort . . . . .  Die n~here.Ausffihrung dieser und andrer Gesetze . . .  werde ich ein 
-~ndres Mal folgen lassen.' 

All of this is of course i n  perfect agreement with the results suggested in 
our concluding section. 

(2). We must add a few words concerning the memoirs of St~ckel referred 

to on p .  34- These have only become accessible to us during the print- 
ing of the present memoir, and it is not possible for us even now to give any 

satisfactory summary of their contents;  but  St~ickel considers the problem of 

Cprime-groups' in much detail, and it is clear t h a t  he has anticipated some at 

any rate of the speculations of 5,6.  The method of St~ckel, like that  of Brun, 

rests qn the use of the sieve of Eratosthenes, followed by a heuristic passage 

to the limit; but  Stiiekel's problem is much more general, and he has gone much 

further than Brun in the determination of the constants in the asymptotic for- 

mulae. It  seems to be the principal advantage of our transcendental method, 

considered merely as a machine for the production of heuristic formulae, that  

these constants are determined naturally in the course of the analysis. 

(3)- We should ais0 refer to a later memoir of Brun (r crible d 'Eratos-  

th~ne et ie thdor~me de Goldbach', Videnskapsselakapets Skrifler, Mat.-naturv. 
Klasse, Kristiania, 192o , No. 3). Brun proves, by elementary methods, (z) that  

every large even number is the sum of two numbers, each composed of at most 

9 prime factors, (2) that  the number of prime-pairs ~ ,  ~ + 2, less than x, cannot 
exceed a constant multiple of x(log x) -2.  

Brun's  work enables us to make a substantial improvement in the elemen- 

tary  thoorem G. Using the inequalities proved on pp. 32--34 of his memoir, we 
can show that 

A x  
e (z) < 

(4)- Prof.  Landau has pointed out  to us an error on p. 9- I t  is not neces- 
sarily true that  C k = o  when Zk is imprimitive: our argument is only valid when 
Q is divisible by every prime factor of q. 

The inequality (2. i6) is however correct. Suppose first that  q ~ ; .  (4> o). 
Our argument then holds u n l e s s Q ~  I; in this case g], is the principal character and 
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This inequal i ty  is then easly generalised to all values of q. i f  q = q i q 2 ,  where  

(ql, q2) ~ I, then eve ry  X (rood. q) is the  product, of a u, (mod. q,) and a g~ (rood. 

q~). and it. is easily proved tha t  

The conclusion now follows b y  induction.  


